Skip to main content
Top
Published in: Lasers in Medical Science 2/2013

01-02-2013 | Original Article

Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration

Authors: A. E. Karsten, A. Singh, P. A. Karsten, M. W. H. Braun

Published in: Lasers in Medical Science | Issue 2/2013

Login to get access

Abstract

An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.
Literature
1.
go back to reference Pfefer TJ, Matchette LS, Bennett CL, Gall JA, Wilke JN, Durkin AJ, Ediger MN (2003) Reflectance-based determination of optical properties in highly attenuating tissue. J Biomed Opt 8:206–215PubMedCrossRef Pfefer TJ, Matchette LS, Bennett CL, Gall JA, Wilke JN, Durkin AJ, Ediger MN (2003) Reflectance-based determination of optical properties in highly attenuating tissue. J Biomed Opt 8:206–215PubMedCrossRef
2.
go back to reference Fabrizio M et al (2010) 2010. In: Light propagation through biological tissue and other diffusive media: theory, solutions, and software. SPIE Press, Bellingham, WA, pp 9–23 Fabrizio M et al (2010) 2010. In: Light propagation through biological tissue and other diffusive media: theory, solutions, and software. SPIE Press, Bellingham, WA, pp 9–23
3.
go back to reference Zonios G, Dimou A (2006) Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties. Opt Express 14:8661–8674PubMedCrossRef Zonios G, Dimou A (2006) Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties. Opt Express 14:8661–8674PubMedCrossRef
4.
go back to reference Johns M, Giller CA, German DC, Liu H (2005) Determination of reduced scattering coefficient of biological tissue from a needle-like probe. Opt Express 13:4828–4842PubMedCrossRef Johns M, Giller CA, German DC, Liu H (2005) Determination of reduced scattering coefficient of biological tissue from a needle-like probe. Opt Express 13:4828–4842PubMedCrossRef
5.
go back to reference González FJ, Martínez-Escanamé M, Muñoz RI, Torres-Álvarez B, Moncada B (2010) Diffuse reflectance spectrophotometry for skin phototype determination. Skin Res Technol 16:397–400PubMedCrossRef González FJ, Martínez-Escanamé M, Muñoz RI, Torres-Álvarez B, Moncada B (2010) Diffuse reflectance spectrophotometry for skin phototype determination. Skin Res Technol 16:397–400PubMedCrossRef
6.
go back to reference Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994PubMedCrossRef Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994PubMedCrossRef
7.
go back to reference Alaluf S, Heath A, Carter N, Atkins D, Mahalingam H, Barrett K, Kolb R, Smit N (2001) Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res 14:337–347PubMedCrossRef Alaluf S, Heath A, Carter N, Atkins D, Mahalingam H, Barrett K, Kolb R, Smit N (2001) Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res 14:337–347PubMedCrossRef
8.
go back to reference Agache P, Humbert P (2004) Measuring the skin. Springer, Heidelberg, pp 473–474. ISBN 3-540-01771-2 Agache P, Humbert P (2004) Measuring the skin. Springer, Heidelberg, pp 473–474. ISBN 3-540-01771-2
9.
go back to reference Fitzpatrick TB (1988) The validity and practicality of sunreactive skin type-I through type-VI. Arch Dermatol 124:869–871PubMedCrossRef Fitzpatrick TB (1988) The validity and practicality of sunreactive skin type-I through type-VI. Arch Dermatol 124:869–871PubMedCrossRef
12.
go back to reference Zonios G, Bykowski J, Kollias N (2001) Skin melanin, haemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol 117:1452–1457PubMedCrossRef Zonios G, Bykowski J, Kollias N (2001) Skin melanin, haemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol 117:1452–1457PubMedCrossRef
13.
go back to reference Flock S, Jacques S, Wilson B, Star Wvan Gernert M (1992) Optical properties of Intralipid: a phantom medium for light propagation studies. Lasers Surg Med 12:510–519PubMedCrossRef Flock S, Jacques S, Wilson B, Star Wvan Gernert M (1992) Optical properties of Intralipid: a phantom medium for light propagation studies. Lasers Surg Med 12:510–519PubMedCrossRef
14.
go back to reference van Staveren H, Moes C, van Marie J, Prahl S, van Gemert M (1991) Light scattering in Intralipid-10 % in the wavelength range of 400–1100 nm. Appl Opt 30(31):507–4514 van Staveren H, Moes C, van Marie J, Prahl S, van Gemert M (1991) Light scattering in Intralipid-10 % in the wavelength range of 400–1100 nm. Appl Opt 30(31):507–4514
15.
16.
go back to reference Michielsen K, De Raedt H, Przeslawski J, Garcia N (1998) Computer simulation of time-resolved optical imaging of objects hidden in turbid media. Phys Rep 304:89–144CrossRef Michielsen K, De Raedt H, Przeslawski J, Garcia N (1998) Computer simulation of time-resolved optical imaging of objects hidden in turbid media. Phys Rep 304:89–144CrossRef
17.
go back to reference Tuchin V (2007) Tissue optics: light scattering methods and instruments for medical diagnostics, 2nd edn. SPIE Press, Bellingham, WA, pp 165–175 Tuchin V (2007) Tissue optics: light scattering methods and instruments for medical diagnostics, 2nd edn. SPIE Press, Bellingham, WA, pp 165–175
18.
go back to reference Coleman T, Li Y (1994) On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math Program 67:189–224CrossRef Coleman T, Li Y (1994) On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math Program 67:189–224CrossRef
19.
go back to reference Coleman T, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optimiz 6:418–445CrossRef Coleman T, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optimiz 6:418–445CrossRef
20.
go back to reference Amelink A, Sterenborg H, Bard M, Burgers S (2004) In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy. Opt Lett 29:1087–1089PubMedCrossRef Amelink A, Sterenborg H, Bard M, Burgers S (2004) In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy. Opt Lett 29:1087–1089PubMedCrossRef
21.
go back to reference Zonios G, Bassukas I, Dimou A (2008) Comparative evaluation of two simple diffuse reflectance models for biological tissue applications. Appl Opt 47:4965–4973PubMedCrossRef Zonios G, Bassukas I, Dimou A (2008) Comparative evaluation of two simple diffuse reflectance models for biological tissue applications. Appl Opt 47:4965–4973PubMedCrossRef
23.
go back to reference Tseng S, Bargo P, Durkin A, Kollias N (2009) Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt Express 17:14599–14617PubMedCrossRef Tseng S, Bargo P, Durkin A, Kollias N (2009) Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt Express 17:14599–14617PubMedCrossRef
24.
go back to reference Simpson C, Kohl M, Essenpreis M, Cope M (1998) Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 43:2465–2478PubMedCrossRef Simpson C, Kohl M, Essenpreis M, Cope M (1998) Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 43:2465–2478PubMedCrossRef
Metadata
Title
Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration
Authors
A. E. Karsten
A. Singh
P. A. Karsten
M. W. H. Braun
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 2/2013
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1079-2

Other articles of this Issue 2/2013

Lasers in Medical Science 2/2013 Go to the issue