Skip to main content
Top
Published in: Child and Adolescent Psychiatry and Mental Health 1/2017

Open Access 01-12-2017 | Research Article

Differential therapeutic effects of atomoxetine and methylphenidate in childhood attention deficit/hyperactivity disorder as measured by near-infrared spectroscopy

Authors: Yoko Nakanishi, Toyosaku Ota, Junzo Iida, Kazuhiko Yamamuro, Naoko Kishimoto, Kosuke Okazaki, Toshifumi Kishimoto

Published in: Child and Adolescent Psychiatry and Mental Health | Issue 1/2017

Login to get access

Abstract

Background

The stimulant methylphenidate (MPH) and the nonstimulant atomoxetine (ATX) are the most commonly-prescribed pharmacological treatments for attention deficit/hyperactivity disorder (ADHD). However, the drug-specific mechanism of action on brain function in ADHD patients is not well known. This study examined differences in prefrontal hemodynamic activity between MPH and ATX in children with ADHD as measured by near-infrared spectroscopy (NIRS) using the Stroop color-word task.

Methods

Thirty children with ADHD participated in the present study. We used 24-channel NIRS (ETG-4000) to measure the relative concentrations of oxyhemoglobin in the frontal lobes of participants in the drug-naïve condition and those who had received MPH (n = 16) or ATX (n = 14) for 12 weeks. Measurements were conducted every 0.1 s during the Stroop color-word task. We used the ADHD RS-IV-J (Home Version) to evaluate ADHD symptoms.

Results

Treatment with either MPH or ATX significantly reduced ADHD symptoms, as measured by the ADHD RS-IV-J, and improved performance on the Stroop color-word task in terms of number of correct words. We found significantly higher levels of oxyhemoglobin changes in the prefrontal cortex of participants in the ATX condition compared with the values seen at baseline (pre-ATX). In contrast, we found no oxyhemoglobin changes between pre- and post-treatment with MPH.

Conclusions

The present study suggests that MPH and ATX have differential effects on prefrontal hemodynamic activity in children with ADHD.
Literature
1.
go back to reference Seidman LJ. Neuropsychological functioning in people with ADHD across the lifespan. Clin Psychol Rev. 2006;26(4):466–85.CrossRefPubMed Seidman LJ. Neuropsychological functioning in people with ADHD across the lifespan. Clin Psychol Rev. 2006;26(4):466–85.CrossRefPubMed
2.
go back to reference Chamberlain SR, Del Campo N, Dowson J, Müller U, Clark L, Robbins TW, Sahakian BJ. Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry. 2007;62(9):977–84.CrossRefPubMed Chamberlain SR, Del Campo N, Dowson J, Müller U, Clark L, Robbins TW, Sahakian BJ. Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry. 2007;62(9):977–84.CrossRefPubMed
3.
go back to reference Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):e145–57.CrossRefPubMed Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):e145–57.CrossRefPubMed
4.
go back to reference Makris N, Biederman J, Monuteaux MC, Seidman LJ. Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci. 2009;31(1–2):36–49.CrossRefPubMedPubMedCentral Makris N, Biederman J, Monuteaux MC, Seidman LJ. Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci. 2009;31(1–2):36–49.CrossRefPubMedPubMedCentral
5.
go back to reference Arnsten AF. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs. 2009;23(Suppl 1):33–41.CrossRefPubMed Arnsten AF. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs. 2009;23(Suppl 1):33–41.CrossRefPubMed
6.
go back to reference Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry. 1998;155(10):1325–31.CrossRefPubMed Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry. 1998;155(10):1325–31.CrossRefPubMed
7.
go back to reference Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, Malison RT, Carson RE, Ding YS. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry. 2010;68(9):854–60.CrossRefPubMedPubMedCentral Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, Malison RT, Carson RE, Ding YS. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry. 2010;68(9):854–60.CrossRefPubMedPubMedCentral
8.
go back to reference Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27(5):699–711.CrossRefPubMed Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27(5):699–711.CrossRefPubMed
9.
go back to reference Liu Q, Zhang H, Fang Q, Qin L. Comparative efficacy and safety of methylphenidate and atomoxetine for attention-deficit hyperactivity disorder in children and adolescents: meta-analysis based on head-to-head trials. J Clin Exp Neuropsychol. 2017. doi:10.1080/13803395.2016.1273320.PubMed Liu Q, Zhang H, Fang Q, Qin L. Comparative efficacy and safety of methylphenidate and atomoxetine for attention-deficit hyperactivity disorder in children and adolescents: meta-analysis based on head-to-head trials. J Clin Exp Neuropsychol. 2017. doi:10.​1080/​13803395.​2016.​1273320.PubMed
10.
go back to reference Ni HC, Shang CY, Gau SS, Lin YJ, Huang HC, Yang LK. A head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment for executive function in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2013;16(9):1959–73.CrossRefPubMed Ni HC, Shang CY, Gau SS, Lin YJ, Huang HC, Yang LK. A head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment for executive function in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2013;16(9):1959–73.CrossRefPubMed
11.
go back to reference Yang L, Cao Q, Shuai L, Li H, Chan RC, Wang Y. Comparative study of OROS-MPH and atomoxetine on executive function improvement in ADHD: a randomized controlled trial. Int J Neuropsychopharmacol. 2012;15(1):15–26.CrossRefPubMed Yang L, Cao Q, Shuai L, Li H, Chan RC, Wang Y. Comparative study of OROS-MPH and atomoxetine on executive function improvement in ADHD: a randomized controlled trial. Int J Neuropsychopharmacol. 2012;15(1):15–26.CrossRefPubMed
12.
go back to reference Smith A, Cubillo A, Barrett N, Giampietro V, Simmons A, Brammer M, Rubia K. Neurofunctional effects of methylphenidate and atomoxetine in boys with attention-deficit/hyperactivity disorder during time discrimination. Biol Psychiatry. 2013;74(8):615–22.CrossRefPubMed Smith A, Cubillo A, Barrett N, Giampietro V, Simmons A, Brammer M, Rubia K. Neurofunctional effects of methylphenidate and atomoxetine in boys with attention-deficit/hyperactivity disorder during time discrimination. Biol Psychiatry. 2013;74(8):615–22.CrossRefPubMed
13.
go back to reference Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K. Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychol Med. 2014;44(3):633–46.CrossRefPubMed Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K. Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychol Med. 2014;44(3):633–46.CrossRefPubMed
14.
go back to reference Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 2004;23(Suppl 1):S275–88.CrossRefPubMed Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 2004;23(Suppl 1):S275–88.CrossRefPubMed
15.
go back to reference Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry. 2002;52(7):679–93.CrossRefPubMed Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry. 2002;52(7):679–93.CrossRefPubMed
16.
go back to reference Obrig H, Villringer A. Beyond the visible–imaging the human brain with light. J Cereb Blood Flow Metab. 2003;23(1):1–18.CrossRefPubMed Obrig H, Villringer A. Beyond the visible–imaging the human brain with light. J Cereb Blood Flow Metab. 2003;23(1):1–18.CrossRefPubMed
17.
go back to reference Hoshi Y, Kobayashi N, Tamura M. Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol. 2001;90(5):1657–62.PubMed Hoshi Y, Kobayashi N, Tamura M. Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol. 2001;90(5):1657–62.PubMed
18.
go back to reference Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, Yoshikawa E, Futatsubashi M, Ueda Y, Okada H, Yamashita Y. Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage. 2006;29(3):697–705.CrossRefPubMed Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, Yoshikawa E, Futatsubashi M, Ueda Y, Okada H, Yamashita Y. Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage. 2006;29(3):697–705.CrossRefPubMed
19.
go back to reference Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, Schwaiger M, Villringer A. Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study. Adv Exp Med Biol. 1997;413:149–53.CrossRefPubMed Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, Schwaiger M, Villringer A. Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study. Adv Exp Med Biol. 1997;413:149–53.CrossRefPubMed
20.
go back to reference Matsuo K, Kato T, Taneichi K, Matsumoto A, Ohtani T, Hamamoto T, Yamasue H, Sakano Y, Sasaki T, Sadamatsu M, Iwanami A, Asukai N, Kato N. Activation of the prefrontal cortex to trauma-related stimuli measured by near-infrared spectroscopy in posttraumatic stress disorder due to terrorism. Psychophysiology. 2003;40(4):492–500.CrossRefPubMed Matsuo K, Kato T, Taneichi K, Matsumoto A, Ohtani T, Hamamoto T, Yamasue H, Sakano Y, Sasaki T, Sadamatsu M, Iwanami A, Asukai N, Kato N. Activation of the prefrontal cortex to trauma-related stimuli measured by near-infrared spectroscopy in posttraumatic stress disorder due to terrorism. Psychophysiology. 2003;40(4):492–500.CrossRefPubMed
21.
go back to reference Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, Suto T, Mikuni M. Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage. 2006;29(1):172–84.CrossRefPubMed Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, Suto T, Mikuni M. Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage. 2006;29(1):172–84.CrossRefPubMed
22.
go back to reference Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry. 2004;55(5):501–11.CrossRefPubMed Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry. 2004;55(5):501–11.CrossRefPubMed
23.
go back to reference Negoro H, Sawada M, Iida J, Ota T, Tanaka S, Kishimoto T. Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev. 2010;41(2):193–203.CrossRefPubMed Negoro H, Sawada M, Iida J, Ota T, Tanaka S, Kishimoto T. Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev. 2010;41(2):193–203.CrossRefPubMed
24.
go back to reference Ota T, Iida J, Sawada M, Suehiro Y, Yamamuro K, Matsuura H, Tanaka S, Kishimoto N, Negoro H, Kishimoto T. Reduced prefrontal hemodynamic response in pediatric obsessive-compulsive disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev. 2013;44(2):265–77.CrossRefPubMed Ota T, Iida J, Sawada M, Suehiro Y, Yamamuro K, Matsuura H, Tanaka S, Kishimoto N, Negoro H, Kishimoto T. Reduced prefrontal hemodynamic response in pediatric obsessive-compulsive disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev. 2013;44(2):265–77.CrossRefPubMed
25.
go back to reference Okada K, Ota T, Iida J, Kishimoto N, Kishimoto T. Lower prefrontal activity in adults with obsessive-compulsive disorder as measured by near-infrared spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:7–13.CrossRefPubMed Okada K, Ota T, Iida J, Kishimoto N, Kishimoto T. Lower prefrontal activity in adults with obsessive-compulsive disorder as measured by near-infrared spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:7–13.CrossRefPubMed
26.
go back to reference Yamamuro K, Ota T, Iida J, Nakanishi Y, Uratani M, Matsuura H, Kishimoto N, Tanaka S, Negoro H, Kishimoto T. Prefrontal dysfunction in pediatric Tourette’s disorder as measured by near-infrared spectroscopy. BMC Psychiatry. 2015;15:102.CrossRefPubMedPubMedCentral Yamamuro K, Ota T, Iida J, Nakanishi Y, Uratani M, Matsuura H, Kishimoto N, Tanaka S, Negoro H, Kishimoto T. Prefrontal dysfunction in pediatric Tourette’s disorder as measured by near-infrared spectroscopy. BMC Psychiatry. 2015;15:102.CrossRefPubMedPubMedCentral
27.
go back to reference Yamamuro K, Makinodan M, Kimoto S, Kishimoto N, Morimoto T, Toritsuka M, Matsuoka K, Takebayashi Y, Takata T, Takahashi M, Tanimura Y, Nishihata Y, Matsuda Y, Ota T, Yoshino H, Iida J, Kishimoto T. Differential patterns of blood oxygenation in the prefrontal cortex between patients with methamphetamine-induced psychosis and schizophrenia. Sci Rep. 2015;5:12107.CrossRefPubMedPubMedCentral Yamamuro K, Makinodan M, Kimoto S, Kishimoto N, Morimoto T, Toritsuka M, Matsuoka K, Takebayashi Y, Takata T, Takahashi M, Tanimura Y, Nishihata Y, Matsuda Y, Ota T, Yoshino H, Iida J, Kishimoto T. Differential patterns of blood oxygenation in the prefrontal cortex between patients with methamphetamine-induced psychosis and schizophrenia. Sci Rep. 2015;5:12107.CrossRefPubMedPubMedCentral
28.
go back to reference Yamamuro K, Kimoto S, Iida J, Kishimoto N, Nakanishi Y, Tanaka S, Ota T, Makinodan M, Kishimoto T. Reduced prefrontal cortex hemodynamic response in adults with methamphetamine induced psychosis: relevance for impulsivity. PLoS ONE. 2016;11(4):e0152373.CrossRefPubMedPubMedCentral Yamamuro K, Kimoto S, Iida J, Kishimoto N, Nakanishi Y, Tanaka S, Ota T, Makinodan M, Kishimoto T. Reduced prefrontal cortex hemodynamic response in adults with methamphetamine induced psychosis: relevance for impulsivity. PLoS ONE. 2016;11(4):e0152373.CrossRefPubMedPubMedCentral
29.
go back to reference Weber P, Lütschg J, Fahnenstich H. Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J Dev Behav Pediatr. 2005;26(2):105–11.CrossRefPubMed Weber P, Lütschg J, Fahnenstich H. Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J Dev Behav Pediatr. 2005;26(2):105–11.CrossRefPubMed
30.
go back to reference Inoue Y, Sakihara K, Gunji A, Ozawa H, Kimiya S, Shinoda H, Kaga M, Inagaki M. Reduced prefrontal hemodynamic response in children with ADHD during the Go/NoGo task: a NIRS study. NeuroReport. 2012;23(2):55–60.CrossRefPubMed Inoue Y, Sakihara K, Gunji A, Ozawa H, Kimiya S, Shinoda H, Kaga M, Inagaki M. Reduced prefrontal hemodynamic response in children with ADHD during the Go/NoGo task: a NIRS study. NeuroReport. 2012;23(2):55–60.CrossRefPubMed
31.
go back to reference Ota T, Iida J, Nakanishi Y, Sawada S, Matsuura H, Yamamuro K, Ueda S, Uratani M, Kishimoto N, Negoro H, Kishimoto T. Increased prefrontal hemodynamic change after atomoxetine administration in pediatric attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Psychiatry Clin Neurosci. 2015;69(3):161–70.CrossRefPubMed Ota T, Iida J, Nakanishi Y, Sawada S, Matsuura H, Yamamuro K, Ueda S, Uratani M, Kishimoto N, Negoro H, Kishimoto T. Increased prefrontal hemodynamic change after atomoxetine administration in pediatric attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Psychiatry Clin Neurosci. 2015;69(3):161–70.CrossRefPubMed
32.
go back to reference Araki A, Ikegami M, Okayama A, Matsumoto N, Takahashi S, Azuma H, Takahashi M. Improved prefrontal activity in AD/HD children treated with atomoxetine: a NIRS study. Brain Dev. 2015;37(1):76–87.CrossRefPubMed Araki A, Ikegami M, Okayama A, Matsumoto N, Takahashi S, Azuma H, Takahashi M. Improved prefrontal activity in AD/HD children treated with atomoxetine: a NIRS study. Brain Dev. 2015;37(1):76–87.CrossRefPubMed
33.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (DSM-5). 5th ed. Arlington: APA; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (DSM-5). 5th ed. Arlington: APA; 2013.CrossRef
34.
go back to reference Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980–8.CrossRefPubMed Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980–8.CrossRefPubMed
35.
go back to reference Roberts CA, Montgomery C. fNIRS suggests increased effort during executive access in ecstasy polydrug users. Psychopharmacology. 2015;232(9):1571–82.CrossRefPubMed Roberts CA, Montgomery C. fNIRS suggests increased effort during executive access in ecstasy polydrug users. Psychopharmacology. 2015;232(9):1571–82.CrossRefPubMed
36.
go back to reference Hock C, Villringer K, Müller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, Hofmann M, Minoshima S, Schwaiger M, Dirnagl U, Villringer A. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)–correlation with simultaneous rCBF-PET measurements. Brain Res. 1997;755(2):293–303.CrossRefPubMed Hock C, Villringer K, Müller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, Hofmann M, Minoshima S, Schwaiger M, Dirnagl U, Villringer A. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)–correlation with simultaneous rCBF-PET measurements. Brain Res. 1997;755(2):293–303.CrossRefPubMed
37.
go back to reference Ymazaki K. ADHD-RS-IV Japanese version. In: Kanbayashi Y, Saito K, Kita M, editors. Japanese guideline for the diagnosis and treatment of attention deficit hyperactivity disorder (ADHD). Tokyo: Jiho; 2013. p. 48–54 (In Japanese). Ymazaki K. ADHD-RS-IV Japanese version. In: Kanbayashi Y, Saito K, Kita M, editors. Japanese guideline for the diagnosis and treatment of attention deficit hyperactivity disorder (ADHD). Tokyo: Jiho; 2013. p. 48–54 (In Japanese).
38.
39.
go back to reference Schweitzer JB, Faber TL, Grafton ST, Tune LE, Hoffman JM, Kilts CD. Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry. 2000;157(2):278–80.CrossRefPubMed Schweitzer JB, Faber TL, Grafton ST, Tune LE, Hoffman JM, Kilts CD. Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry. 2000;157(2):278–80.CrossRefPubMed
40.
go back to reference Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, Hueber D. Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med Phys. 2001;28(4):521–7.CrossRefPubMed Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, Hueber D. Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med Phys. 2001;28(4):521–7.CrossRefPubMed
41.
go back to reference Sawada M, Iida J, Ota T, Negoro H, Tanaka S, Sadamatsu M, Kishimoto T. Effects of osmotic-release methylphenidate in attention-deficit/hyperactivity disorder as measured by event-related potentials. Psychiatry Clin Neurosci. 2010;64(5):491–8.CrossRefPubMed Sawada M, Iida J, Ota T, Negoro H, Tanaka S, Sadamatsu M, Kishimoto T. Effects of osmotic-release methylphenidate in attention-deficit/hyperactivity disorder as measured by event-related potentials. Psychiatry Clin Neurosci. 2010;64(5):491–8.CrossRefPubMed
42.
go back to reference Yamamuro K, Ota T, Iida J, Nakanishi Y, Matsuura H, Uratani M, Okazaki K, Kishimoto N, Tanaka S, Kishimoto T. Event-related potentials reflect the efficacy of pharmaceutical treatments in children and adolescents with attention deficit/hyperactivity disorder. Psychiatry Res. 2016;242:288–94.CrossRefPubMed Yamamuro K, Ota T, Iida J, Nakanishi Y, Matsuura H, Uratani M, Okazaki K, Kishimoto N, Tanaka S, Kishimoto T. Event-related potentials reflect the efficacy of pharmaceutical treatments in children and adolescents with attention deficit/hyperactivity disorder. Psychiatry Res. 2016;242:288–94.CrossRefPubMed
43.
go back to reference Bush G, Holmes J, Shin LM, Surman C, Makris N, Mick E, Seidman LJ, Biederman J. Atomoxetine increases fronto-parietal functional MRI activation in attention-deficit/hyperactivity disorder: a pilot study. Psychiatry Res. 2013;211(1):88–91.CrossRefPubMed Bush G, Holmes J, Shin LM, Surman C, Makris N, Mick E, Seidman LJ, Biederman J. Atomoxetine increases fronto-parietal functional MRI activation in attention-deficit/hyperactivity disorder: a pilot study. Psychiatry Res. 2013;211(1):88–91.CrossRefPubMed
44.
go back to reference Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J. Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry. 2008;65(1):102–14.CrossRefPubMed Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J. Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry. 2008;65(1):102–14.CrossRefPubMed
45.
go back to reference Schulz KP, Fan J, Bédard AC, Clerkin SM, Ivanov I, Tang CY, Halperin JM, Newcorn JH. Common and unique therapeutic mechanisms of stimulant and nonstimulant treatments for attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2012;69(9):952–61.CrossRefPubMed Schulz KP, Fan J, Bédard AC, Clerkin SM, Ivanov I, Tang CY, Halperin JM, Newcorn JH. Common and unique therapeutic mechanisms of stimulant and nonstimulant treatments for attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2012;69(9):952–61.CrossRefPubMed
46.
go back to reference Chou TL, Chia S, Shang CY, Gau SS. Differential therapeutic effects of 12-week treatment of atomoxetine and methylphenidate on drug-naïve children with attention deficit/hyperactivity disorder: a counting Stroop functional MRI study. Eur Neuropsychopharmacol. 2015;25(12):2300–10.CrossRefPubMed Chou TL, Chia S, Shang CY, Gau SS. Differential therapeutic effects of 12-week treatment of atomoxetine and methylphenidate on drug-naïve children with attention deficit/hyperactivity disorder: a counting Stroop functional MRI study. Eur Neuropsychopharmacol. 2015;25(12):2300–10.CrossRefPubMed
47.
go back to reference Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer MJ, Simmons A, Rubia K. Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cereb Cortex. 2014;24(1):174–85.CrossRefPubMed Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer MJ, Simmons A, Rubia K. Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cereb Cortex. 2014;24(1):174–85.CrossRefPubMed
48.
go back to reference Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM. Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry. 2004;161(7):1173–80.CrossRefPubMed Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM. Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry. 2004;161(7):1173–80.CrossRefPubMed
49.
go back to reference Volkow ND, Fowler JS, Wang GJ, Telang F, Logan J, Wong C, Ma J, Pradhan K, Benveniste H, Swanson JM. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS ONE. 2008;3(4):e2017.CrossRefPubMedPubMedCentral Volkow ND, Fowler JS, Wang GJ, Telang F, Logan J, Wong C, Ma J, Pradhan K, Benveniste H, Swanson JM. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS ONE. 2008;3(4):e2017.CrossRefPubMedPubMedCentral
50.
51.
go back to reference Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31(7):977–86.CrossRefPubMed Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31(7):977–86.CrossRefPubMed
52.
go back to reference Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci. 2012;16(1):17–26.CrossRefPubMed Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci. 2012;16(1):17–26.CrossRefPubMed
53.
go back to reference Li CS, Yan P, Bergquist KL, Sinha R. Greater activation of the “default” brain regions predicts stop signal errors. Neuroimage. 2007;38(3):640–8.CrossRefPubMedPubMedCentral Li CS, Yan P, Bergquist KL, Sinha R. Greater activation of the “default” brain regions predicts stop signal errors. Neuroimage. 2007;38(3):640–8.CrossRefPubMedPubMedCentral
54.
go back to reference Fassbender C, Zhang H, Buzy WM, Cortes CR, Mizuiri D, Beckett L, Schweitzer JB. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 2009;1273:114–28.CrossRefPubMedPubMedCentral Fassbender C, Zhang H, Buzy WM, Cortes CR, Mizuiri D, Beckett L, Schweitzer JB. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 2009;1273:114–28.CrossRefPubMedPubMedCentral
55.
go back to reference Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci. 2009;29(22):7364–78.CrossRefPubMedPubMedCentral Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci. 2009;29(22):7364–78.CrossRefPubMedPubMedCentral
56.
go back to reference Tomasi D, Volkow ND, Wang R, Telang F, Wang GJ, Chang L, Ernst T, Fowler JS. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. PLoS ONE. 2009;4(6):e6102.CrossRefPubMedPubMedCentral Tomasi D, Volkow ND, Wang R, Telang F, Wang GJ, Chang L, Ernst T, Fowler JS. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. PLoS ONE. 2009;4(6):e6102.CrossRefPubMedPubMedCentral
57.
go back to reference Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse. 2002;43(3):181–7.CrossRefPubMed Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse. 2002;43(3):181–7.CrossRefPubMed
58.
go back to reference Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron. 2004;42(4):653–63.CrossRefPubMed Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron. 2004;42(4):653–63.CrossRefPubMed
59.
go back to reference Rubia K, Halari R, Cubillo A, Smith AB, Mohammad AM, Brammer M, Taylor E. Methylphenidate normalizes fronto-striatal under activation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology. 2011;36(8):1575–86.CrossRefPubMedPubMedCentral Rubia K, Halari R, Cubillo A, Smith AB, Mohammad AM, Brammer M, Taylor E. Methylphenidate normalizes fronto-striatal under activation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology. 2011;36(8):1575–86.CrossRefPubMedPubMedCentral
60.
go back to reference Epstein JN, Casey BJ, Tonev ST, Davidson MC, Reiss AL, Garrett A, Hinshaw SP, Greenhill LL, Glover G, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Spicer J. ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry. 2007;48(9):899–913.CrossRefPubMed Epstein JN, Casey BJ, Tonev ST, Davidson MC, Reiss AL, Garrett A, Hinshaw SP, Greenhill LL, Glover G, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Spicer J. ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry. 2007;48(9):899–913.CrossRefPubMed
61.
go back to reference Peterson BS, Potenza MN, Wang Z, Zhu H, Martin A, Marsh R, Plessen KJ, Yu S. An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry. 2009;166(11):1286–94.CrossRefPubMedPubMedCentral Peterson BS, Potenza MN, Wang Z, Zhu H, Martin A, Marsh R, Plessen KJ, Yu S. An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry. 2009;166(11):1286–94.CrossRefPubMedPubMedCentral
62.
go back to reference Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, Scerif G, Liddle PF. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry. 2011;52(7):761–71.CrossRefPubMed Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, Scerif G, Liddle PF. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry. 2011;52(7):761–71.CrossRefPubMed
63.
go back to reference Ishii-Takahashi A, Takizawa R, Nishimura Y, Kawakubo Y, Hamada K, Okuhata S, Kawasaki S, Kuwabara H, Shimada T, Todokoro A, Igarashi T, Watanabe K, Yamasue H, Kato N, Kasai K, Kano Y. Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: a randomized controlled trial. Neuropsychopharmacology. 2015;40(12):2676–85.CrossRefPubMedPubMedCentral Ishii-Takahashi A, Takizawa R, Nishimura Y, Kawakubo Y, Hamada K, Okuhata S, Kawasaki S, Kuwabara H, Shimada T, Todokoro A, Igarashi T, Watanabe K, Yamasue H, Kato N, Kasai K, Kano Y. Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: a randomized controlled trial. Neuropsychopharmacology. 2015;40(12):2676–85.CrossRefPubMedPubMedCentral
64.
go back to reference Matsuura N, Ishitobi M, Arai S, Kawamura K, Asano M, Inohara K, Fujioka T, Narimoto T, Wada Y, Hiratani M, Kosaka H. Effects of methylphenidate in children with attention deficit hyperactivity disorder: a near-infrared spectroscopy study with CANTAB®. Child Adolesc Psychiatry Ment Health. 2014;8(1):273.CrossRefPubMedPubMedCentral Matsuura N, Ishitobi M, Arai S, Kawamura K, Asano M, Inohara K, Fujioka T, Narimoto T, Wada Y, Hiratani M, Kosaka H. Effects of methylphenidate in children with attention deficit hyperactivity disorder: a near-infrared spectroscopy study with CANTAB®. Child Adolesc Psychiatry Ment Health. 2014;8(1):273.CrossRefPubMedPubMedCentral
65.
go back to reference Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48(1):46–57.CrossRefPubMed Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48(1):46–57.CrossRefPubMed
66.
go back to reference Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.CrossRefPubMedPubMedCentral Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.CrossRefPubMedPubMedCentral
67.
go back to reference Tsujimoto S, Genovesio A, Wise SP. Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci. 2010;13(1):120–6.CrossRefPubMed Tsujimoto S, Genovesio A, Wise SP. Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci. 2010;13(1):120–6.CrossRefPubMed
68.
go back to reference Arai S, Okamoto Y, Fujioka T, Inohara K, Ishitobi M, Matsumura Y, Jung M, Kawamura K, Takiguchi S, Tomoda A, Wada Y, Hiratani M, Matsuura N, Kosaka H. Altered frontal pole development affects self-generated spatial working memory in ADHD. Brain Dev. 2016;38(5):471–80.CrossRefPubMed Arai S, Okamoto Y, Fujioka T, Inohara K, Ishitobi M, Matsumura Y, Jung M, Kawamura K, Takiguchi S, Tomoda A, Wada Y, Hiratani M, Matsuura N, Kosaka H. Altered frontal pole development affects self-generated spatial working memory in ADHD. Brain Dev. 2016;38(5):471–80.CrossRefPubMed
69.
go back to reference Shinba T, Nagano M, Kariya N, Ogawa K, Shinozaki T, Shimosato S, Hoshi Y. Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia. Biol Psychiatry. 2004;55(2):154–64.CrossRefPubMed Shinba T, Nagano M, Kariya N, Ogawa K, Shinozaki T, Shimosato S, Hoshi Y. Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia. Biol Psychiatry. 2004;55(2):154–64.CrossRefPubMed
Metadata
Title
Differential therapeutic effects of atomoxetine and methylphenidate in childhood attention deficit/hyperactivity disorder as measured by near-infrared spectroscopy
Authors
Yoko Nakanishi
Toyosaku Ota
Junzo Iida
Kazuhiko Yamamuro
Naoko Kishimoto
Kosuke Okazaki
Toshifumi Kishimoto
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Child and Adolescent Psychiatry and Mental Health / Issue 1/2017
Electronic ISSN: 1753-2000
DOI
https://doi.org/10.1186/s13034-017-0163-6

Other articles of this Issue 1/2017

Child and Adolescent Psychiatry and Mental Health 1/2017 Go to the issue