Skip to main content
Top
Published in: Molecular Pain 1/2008

Open Access 01-12-2008 | Research

Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice

Authors: Tsung-Chieh Chen, Ying-Ying Cheng, Wei-Zen Sun, Bai-Chuang Shyu

Published in: Molecular Pain | Issue 1/2008

Login to get access

Abstract

Background

Mice lacking the preproenkephalin (ppENK) gene are hyperalgesic and show more anxiety and aggression than wild-type (WT) mice. The marked behavioral changes in ppENK knock-out (KO) mice appeared to occur in supraspinal response to painful stimuli. However the functional role of enkephalins in the supraspinal nociceptive processing and their underlying mechanism is not clear. The aim of present study was to compare supraspinal nociceptive and morphine antinociceptive responses between WT and ppENK KO mice.

Results

The genotypes of bred KO mice were confirmed by PCR. Met-enkephalin immunoreactive neurons were labeled in the caudate-putamen, intermediated part of lateral septum, lateral globus pallidus, intermediated part of lateral septum, hypothalamus, and amygdala of WT mice. Met-enkephalin immunoreactive neurons were not found in the same brain areas in KO mice. Tail withdrawal and von Frey test results did not differ between WT and KO mice. KO mice had shorter latency to start paw licking than WT mice in the hot plate test. The maximal percent effect of morphine treatments (5 mg/kg and 10 mg/kg, i.p.) differed between WT and KO mice in hot plate test. The current source density (CSD) profiles evoked by peripheral noxious stimuli in the primary somatosenstory cortex (S1) and anterior cingulate cortex (ACC) were similar in WT and KO mice. After morphine injection, the amplitude of the laser-evoked sink currents was decreased in S1 while the amplitude of electrical-evoked sink currents was increased in the ACC. These differential morphine effects in S1 and ACC were enhanced in KO mice. Facilitation of synaptic currents in the ACC is mediated by GABA inhibitory interneurons in the local circuitry. Percent increases in opioid receptor binding in S1 and ACC were 5.1% and 5.8%, respectively.

Conclusion

The present results indicate that the endogenous enkephalin system is not involved in acute nociceptive transmission in the spinal cord, S1, and ACC. However, morphine preferentially suppressed supraspinal related nociceptive behavior in KO mice. This effect was reflected in the potentiated differential effects of morphine in the S1 and ACC in KO mice. This potentiation may be due to an up-regulation of opioid receptors. Thus these findings strongly suggest an antagonistic interaction between the endogenous enkephalinergic system and exogenous opioid analgesic actions in the supraspinal brain structures.
Appendix
Available only for authorised users
Literature
3.
go back to reference Imura H, Kato Y, Nakai Y, Nakao K, Tanaka I, Jingami H, Koh T, Yoshimasa T, Tsukada T, Suda M, et al.: Endogenous opioids and related peptides: from molecular biology to clinical medicine. The Sir Henry Dale lecture for 1985. J Endocrinol 1985, 107: 147–157.CrossRefPubMed Imura H, Kato Y, Nakai Y, Nakao K, Tanaka I, Jingami H, Koh T, Yoshimasa T, Tsukada T, Suda M, et al.: Endogenous opioids and related peptides: from molecular biology to clinical medicine. The Sir Henry Dale lecture for 1985. J Endocrinol 1985, 107: 147–157.CrossRefPubMed
4.
go back to reference Noble F, Smadja C, Valverde O, Maldonado R, Coric P, Turcaud S, Fournie-Zaluski MC, Roques BP: Pain-suppressive effects on various nociceptive stimuli (thermal, chemical, electrical and inflammatory) of the first orally active enkephalin-metabolizing enzyme inhibitor RB 120. Pain 1997, 73: 383–391.CrossRefPubMed Noble F, Smadja C, Valverde O, Maldonado R, Coric P, Turcaud S, Fournie-Zaluski MC, Roques BP: Pain-suppressive effects on various nociceptive stimuli (thermal, chemical, electrical and inflammatory) of the first orally active enkephalin-metabolizing enzyme inhibitor RB 120. Pain 1997, 73: 383–391.CrossRefPubMed
5.
go back to reference al-Rodhan N, Chipkin R, Yaksh TL: The antinociceptive effects of SCH-3 a neutral endopeptidase (enkephalinase) inhibitor, microinjected into the periaqueductal, ventral medulla and amygdala. Brain Res 2615, 520: 123–130.CrossRef al-Rodhan N, Chipkin R, Yaksh TL: The antinociceptive effects of SCH-3 a neutral endopeptidase (enkephalinase) inhibitor, microinjected into the periaqueductal, ventral medulla and amygdala. Brain Res 2615, 520: 123–130.CrossRef
6.
go back to reference Kita A, Imano K, Seto Y, Yakuo I, Deguchi T, Nakamura H: Antinociceptive and antidepressant-like profiles of BL – a novel enkephalinase inhibitor, in mice and rats. Jpn J Pharmacol 1997, 75(4):337–346.CrossRefPubMed Kita A, Imano K, Seto Y, Yakuo I, Deguchi T, Nakamura H: Antinociceptive and antidepressant-like profiles of BL – a novel enkephalinase inhibitor, in mice and rats. Jpn J Pharmacol 1997, 75(4):337–346.CrossRefPubMed
7.
go back to reference Spanos LJ, Stafinsky JL, Crisp T: A comparative analysis of monoaminergic involvement in the spinal antinociceptive action of DAMPGO and DPDPE. Pain 1989, 39: 329–335.CrossRefPubMed Spanos LJ, Stafinsky JL, Crisp T: A comparative analysis of monoaminergic involvement in the spinal antinociceptive action of DAMPGO and DPDPE. Pain 1989, 39: 329–335.CrossRefPubMed
8.
go back to reference Mizoguchi H, Narita M, Kampine JP, Tseng LF: [Met5]enkephalin and delta2-opioid receptors in the spinal cord are involved in the cold water swimming-induced antinociception in the mouse. Life Sci 1997, 61: PL81–86.CrossRefPubMed Mizoguchi H, Narita M, Kampine JP, Tseng LF: [Met5]enkephalin and delta2-opioid receptors in the spinal cord are involved in the cold water swimming-induced antinociception in the mouse. Life Sci 1997, 61: PL81–86.CrossRefPubMed
9.
go back to reference Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A: Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 1996, 383: 535–538.CrossRefPubMed Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A: Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 1996, 383: 535–538.CrossRefPubMed
10.
go back to reference Ragnauth A, Schuller A, Morgan M, Chan J, Ogawa S, Pintar J, Bodnar RJ, Pfaff DW: Female preproenkephalin-knockout mice display altered emotional responses. Proc Natl Acad Sci USA 2001, 98: 1958–1963.PubMedCentralCrossRefPubMed Ragnauth A, Schuller A, Morgan M, Chan J, Ogawa S, Pintar J, Bodnar RJ, Pfaff DW: Female preproenkephalin-knockout mice display altered emotional responses. Proc Natl Acad Sci USA 2001, 98: 1958–1963.PubMedCentralCrossRefPubMed
11.
go back to reference Berrendero F, Mendizabal V, Robledo P, Galeote L, Bilkei-Gorzo A, Zimmer A, Maldonado R: Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene. J Neurosci 2005, 25: 1103–1112.CrossRefPubMed Berrendero F, Mendizabal V, Robledo P, Galeote L, Bilkei-Gorzo A, Zimmer A, Maldonado R: Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene. J Neurosci 2005, 25: 1103–1112.CrossRefPubMed
12.
go back to reference Bilkei-Gorzo A, Racz I, Michel K, Zimmer A, Klingmuller D, Zimmer A: Behavioral phenotype of pre-proenkephalin-deficient mice on diverse congenic backgrounds. Psychopharmacology (Berl) 2004, 176: 343–352.CrossRef Bilkei-Gorzo A, Racz I, Michel K, Zimmer A, Klingmuller D, Zimmer A: Behavioral phenotype of pre-proenkephalin-deficient mice on diverse congenic backgrounds. Psychopharmacology (Berl) 2004, 176: 343–352.CrossRef
13.
go back to reference Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ: The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum 2005, 52: 1577–1584.CrossRefPubMed Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ: The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum 2005, 52: 1577–1584.CrossRefPubMed
14.
go back to reference Macefield VG, Gandevia SC, Henderson LA: Discrete changes in cortical activation during experimentally induced referred muscle pain: a single-trial fMRI study. Cereb Cortex 2007, 17: 2050–2059.CrossRefPubMed Macefield VG, Gandevia SC, Henderson LA: Discrete changes in cortical activation during experimentally induced referred muscle pain: a single-trial fMRI study. Cereb Cortex 2007, 17: 2050–2059.CrossRefPubMed
15.
go back to reference Morrison I, Lloyd D, di Pellegrino G, Roberts N: Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 2004, 4: 270–278.CrossRefPubMed Morrison I, Lloyd D, di Pellegrino G, Roberts N: Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 2004, 4: 270–278.CrossRefPubMed
16.
go back to reference Vogt BA, Sikes RW: The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res 2000, 122: 223–235.CrossRefPubMed Vogt BA, Sikes RW: The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res 2000, 122: 223–235.CrossRefPubMed
17.
go back to reference Kenshalo DR Jr, Isensee O: Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 1983, 50: 1479–1496.PubMed Kenshalo DR Jr, Isensee O: Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 1983, 50: 1479–1496.PubMed
18.
go back to reference Schouenborg J, Kalliomaki J, Gustavsson P, Rosen I: Field potentials evoked in rat primary somatosensory cortex (SI) by impulses in cutaneous A beta- and C-fibres. Brain Res 1986, 397: 86–92.CrossRefPubMed Schouenborg J, Kalliomaki J, Gustavsson P, Rosen I: Field potentials evoked in rat primary somatosensory cortex (SI) by impulses in cutaneous A beta- and C-fibres. Brain Res 1986, 397: 86–92.CrossRefPubMed
19.
go back to reference Sun JJ, Yang JW, Shyu BC: Current source density analysis of laser heat-evoked intra-cortical field potentials in the primary somatosensory cortex of rats. Neuroscience 2006, 140: 1321–1336.CrossRefPubMed Sun JJ, Yang JW, Shyu BC: Current source density analysis of laser heat-evoked intra-cortical field potentials in the primary somatosensory cortex of rats. Neuroscience 2006, 140: 1321–1336.CrossRefPubMed
20.
go back to reference Mylius V, Reis J, Kunz M, Beyer TF, Oertel WH, Rosenow F, Schepelmann K: Modulation of electrically induced pain by paired pulse transcranial magnetic stimulation of the medial frontal cortex. Clin Neurophysiol 2006, 117: 1814–1820.CrossRefPubMed Mylius V, Reis J, Kunz M, Beyer TF, Oertel WH, Rosenow F, Schepelmann K: Modulation of electrically induced pain by paired pulse transcranial magnetic stimulation of the medial frontal cortex. Clin Neurophysiol 2006, 117: 1814–1820.CrossRefPubMed
21.
go back to reference Yang JW, Shih HC, Shyu BC: Intracortical circuits in rat anterior cingulate cortex are activated by nociceptive inputs mediated by medial thalamus. J Neurophysiol 2006, 96: 3409–3422.CrossRefPubMed Yang JW, Shih HC, Shyu BC: Intracortical circuits in rat anterior cingulate cortex are activated by nociceptive inputs mediated by medial thalamus. J Neurophysiol 2006, 96: 3409–3422.CrossRefPubMed
22.
go back to reference Zhang L, Zhang Y, Zhao ZQ: Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus. Eur J Neurosci 2005, 22: 1141–1148.CrossRefPubMed Zhang L, Zhang Y, Zhao ZQ: Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus. Eur J Neurosci 2005, 22: 1141–1148.CrossRefPubMed
23.
go back to reference Kalliomaki J, Luo XL, Yu YB, Schouenborg J: Intrathecally applied morphine inhibits nociceptive C fiber input to the primary somatosensory cortex (SI) of the rat. Pain 1998, 77: 323–329.CrossRefPubMed Kalliomaki J, Luo XL, Yu YB, Schouenborg J: Intrathecally applied morphine inhibits nociceptive C fiber input to the primary somatosensory cortex (SI) of the rat. Pain 1998, 77: 323–329.CrossRefPubMed
24.
go back to reference Tsai ML, Kuo CC, Sun WZ, Yen CT: Differential morphine effects on short- and long-latency laser-evoked cortical responses in the rat. Pain 2004, 110: 665–674.CrossRefPubMed Tsai ML, Kuo CC, Sun WZ, Yen CT: Differential morphine effects on short- and long-latency laser-evoked cortical responses in the rat. Pain 2004, 110: 665–674.CrossRefPubMed
25.
go back to reference Soto-Moyano R, Galvez J, Vallejos C, Hernandez A: Topical application of morphine to the rat somatosensory cortex produces analgesia to tonic pain. J Neurosci Res 1988, 19: 511–514.CrossRefPubMed Soto-Moyano R, Galvez J, Vallejos C, Hernandez A: Topical application of morphine to the rat somatosensory cortex produces analgesia to tonic pain. J Neurosci Res 1988, 19: 511–514.CrossRefPubMed
26.
go back to reference Kuo CC, Yen CT: Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. J Neurophysiol 2005, 94: 1825–1836.CrossRefPubMed Kuo CC, Yen CT: Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. J Neurophysiol 2005, 94: 1825–1836.CrossRefPubMed
27.
go back to reference Mitzdorf U: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 1985, 65: 37–100.PubMed Mitzdorf U: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 1985, 65: 37–100.PubMed
28.
go back to reference Kaplan GB, Leite-Morris KA, Joshi M, Shoeb MH, Carey RJ: Baclofen inhibits opiate-induced conditioned place preference and associated induction of Fos in cortical and limbic regions. Brain Res 2003, 987: 122–125.CrossRefPubMed Kaplan GB, Leite-Morris KA, Joshi M, Shoeb MH, Carey RJ: Baclofen inhibits opiate-induced conditioned place preference and associated induction of Fos in cortical and limbic regions. Brain Res 2003, 987: 122–125.CrossRefPubMed
29.
go back to reference Kuroda M, Yokofujita J, Oda S, Price JL: Synaptic relationships between axon terminals from the mediodorsal thalamic nucleus and gamma-aminobutyric acidergic cortical cells in the prelimbic cortex of the rat. J Comp Neurol 2004, 477: 220–234.CrossRefPubMed Kuroda M, Yokofujita J, Oda S, Price JL: Synaptic relationships between axon terminals from the mediodorsal thalamic nucleus and gamma-aminobutyric acidergic cortical cells in the prelimbic cortex of the rat. J Comp Neurol 2004, 477: 220–234.CrossRefPubMed
30.
go back to reference Clarke S, Zimmer A, Zimmer AM, Hill RG, Kitchen I: Region selective up-regulation of micro-, delta- and kappa-opioid receptors but not opioid receptor-like 1 receptors in the brains of enkephalin and dynorphin knockout mice. Neuroscience 2003, 122: 479–489.CrossRefPubMed Clarke S, Zimmer A, Zimmer AM, Hill RG, Kitchen I: Region selective up-regulation of micro-, delta- and kappa-opioid receptors but not opioid receptor-like 1 receptors in the brains of enkephalin and dynorphin knockout mice. Neuroscience 2003, 122: 479–489.CrossRefPubMed
31.
go back to reference Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE: Pain measurement: an overview. Pain 1985, 22: 1–31.CrossRefPubMed Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE: Pain measurement: an overview. Pain 1985, 22: 1–31.CrossRefPubMed
32.
go back to reference Nitsche JF, Schuller AG, King MA, Zengh M, Pasternak GW, Pintar JE: Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci 2002, 22: 10906–10913.PubMed Nitsche JF, Schuller AG, King MA, Zengh M, Pasternak GW, Pintar JE: Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci 2002, 22: 10906–10913.PubMed
33.
go back to reference da Silva Torres IL, Cucco SN, Bassani M, Duarte MS, Silveira PP, Vasconcellos AP, Tabajara AS, Dantas G, Fontella FU, Dalmaz C, Ferreira MB: Long-lasting delayed hyperalgesia after chronic restraint stress in rats-effect of morphine administration. Neurosci Res 2003, 45: 277–283.CrossRefPubMed da Silva Torres IL, Cucco SN, Bassani M, Duarte MS, Silveira PP, Vasconcellos AP, Tabajara AS, Dantas G, Fontella FU, Dalmaz C, Ferreira MB: Long-lasting delayed hyperalgesia after chronic restraint stress in rats-effect of morphine administration. Neurosci Res 2003, 45: 277–283.CrossRefPubMed
34.
go back to reference Quintero L, Moreno M, Avila C, Arcaya J, Maixner W, Suarez-Roca H: Long-lasting delayed hyperalgesia after subchronic swim stress. Pharmacol Biochem Behav 2000, 67: 449–458.CrossRefPubMed Quintero L, Moreno M, Avila C, Arcaya J, Maixner W, Suarez-Roca H: Long-lasting delayed hyperalgesia after subchronic swim stress. Pharmacol Biochem Behav 2000, 67: 449–458.CrossRefPubMed
35.
go back to reference Vidal C, Jacob J: Hyperalgesia induced by emotional stress in the rat: an experimental animal model of human anxiogenic hyperalgesia. Ann N Y Acad Sci 1986, 467: 73–81.CrossRefPubMed Vidal C, Jacob J: Hyperalgesia induced by emotional stress in the rat: an experimental animal model of human anxiogenic hyperalgesia. Ann N Y Acad Sci 1986, 467: 73–81.CrossRefPubMed
36.
go back to reference Shaw FZ, Chen RF, Tsao HW, Yen CT: Comparison of touch- and laser heat-evoked cortical field potentials in conscious rats. Brain Res 1999, 824: 183–196.CrossRefPubMed Shaw FZ, Chen RF, Tsao HW, Yen CT: Comparison of touch- and laser heat-evoked cortical field potentials in conscious rats. Brain Res 1999, 824: 183–196.CrossRefPubMed
37.
go back to reference Shaw FZ, Chen RF, Yen CT: Dynamic changes of touch- and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Brain Res 2001, 911: 105–115.CrossRefPubMed Shaw FZ, Chen RF, Yen CT: Dynamic changes of touch- and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Brain Res 2001, 911: 105–115.CrossRefPubMed
38.
go back to reference Isseroff RG, Sarne Y, Carmon A, Isseroff A: Cortical potentials evoked by innocuous tactile and noxious thermal stimulation in the rat: differences in localization and latency. Behav Neural Biol 1982, 35: 294–307.CrossRefPubMed Isseroff RG, Sarne Y, Carmon A, Isseroff A: Cortical potentials evoked by innocuous tactile and noxious thermal stimulation in the rat: differences in localization and latency. Behav Neural Biol 1982, 35: 294–307.CrossRefPubMed
39.
go back to reference White ELKA: Cortical circuits: Synaptic organization of the cerebral cortex; structure, function, and theory. In An integrative view of cortical circuitry. Edited by: EL W. Boston: Birkhauser Publisher; 1989:179–206.CrossRef White ELKA: Cortical circuits: Synaptic organization of the cerebral cortex; structure, function, and theory. In An integrative view of cortical circuitry. Edited by: EL W. Boston: Birkhauser Publisher; 1989:179–206.CrossRef
40.
go back to reference Fabri M, Burton H: Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 1991, 311: 405–424.CrossRefPubMed Fabri M, Burton H: Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 1991, 311: 405–424.CrossRefPubMed
41.
go back to reference Fabri M, Burton H: Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 1991, 538: 351–357.CrossRefPubMed Fabri M, Burton H: Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 1991, 538: 351–357.CrossRefPubMed
42.
go back to reference Herkenham M: Laminar organization of thalamic projections to the rat neocortex. Science 1980, 207: 532–535.CrossRefPubMed Herkenham M: Laminar organization of thalamic projections to the rat neocortex. Science 1980, 207: 532–535.CrossRefPubMed
43.
go back to reference Berendse HW, Groenewegen HJ: Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 1991, 42: 73–102.CrossRefPubMed Berendse HW, Groenewegen HJ: Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 1991, 42: 73–102.CrossRefPubMed
44.
go back to reference Krettek JE, Price JL: The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 1977, 171: 157–191.CrossRefPubMed Krettek JE, Price JL: The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 1977, 171: 157–191.CrossRefPubMed
45.
go back to reference Kuroda M, Yokofujita J, Murakami K: An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 1998, 54: 417–458.CrossRefPubMed Kuroda M, Yokofujita J, Murakami K: An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 1998, 54: 417–458.CrossRefPubMed
46.
go back to reference Marini G, Pianca L, Tredici G: Thalamocortical projection from the parafascicular nucleus to layer V pyramidal cells in frontal and cingulate areas of the rat. Neurosci Lett 1996, 203: 81–84.CrossRefPubMed Marini G, Pianca L, Tredici G: Thalamocortical projection from the parafascicular nucleus to layer V pyramidal cells in frontal and cingulate areas of the rat. Neurosci Lett 1996, 203: 81–84.CrossRefPubMed
47.
go back to reference Wang CC, Shyu BC: Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res 2004, 995: 226–235.CrossRefPubMed Wang CC, Shyu BC: Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res 2004, 995: 226–235.CrossRefPubMed
48.
go back to reference Castro-Alamancos MA, Connors BW: Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci 1996, 16: 7742–7756.PubMed Castro-Alamancos MA, Connors BW: Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci 1996, 16: 7742–7756.PubMed
49.
go back to reference Cauller LJ, Connors BW: Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci 1994, 14: 751–762.PubMed Cauller LJ, Connors BW: Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci 1994, 14: 751–762.PubMed
50.
go back to reference Sikes RW, DeFrance JF: Cingulate cortex response to electrical stimulation of the mediodorsal thalamic nucleus. Exp Neurol 1985, 89: 428–441.CrossRefPubMed Sikes RW, DeFrance JF: Cingulate cortex response to electrical stimulation of the mediodorsal thalamic nucleus. Exp Neurol 1985, 89: 428–441.CrossRefPubMed
51.
go back to reference Yamamura H, Iwata K, Tsuboi Y, Toda K, Kitajima K, Shimizu N, Nomura H, Hibiya J, Fujita S, Sumino R: Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res 1996, 735: 83–92.CrossRefPubMed Yamamura H, Iwata K, Tsuboi Y, Toda K, Kitajima K, Shimizu N, Nomura H, Hibiya J, Fujita S, Sumino R: Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res 1996, 735: 83–92.CrossRefPubMed
52.
go back to reference Groenewegen HJ: Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 1988, 24: 379–431.CrossRefPubMed Groenewegen HJ: Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 1988, 24: 379–431.CrossRefPubMed
53.
go back to reference Barton C, Basbaum AI, Fields HL: Dissociation of supraspinal and spinal actions of morphine: a quantitative evaluation. Brain Res 1980, 188: 487–498.CrossRefPubMed Barton C, Basbaum AI, Fields HL: Dissociation of supraspinal and spinal actions of morphine: a quantitative evaluation. Brain Res 1980, 188: 487–498.CrossRefPubMed
54.
go back to reference Chrubasik J, Chrubasik S, Martin E: Non-opioid peptides for analgesia. Acta Neurobiol Exp (Wars) 1993, 53: 289–296. Chrubasik J, Chrubasik S, Martin E: Non-opioid peptides for analgesia. Acta Neurobiol Exp (Wars) 1993, 53: 289–296.
55.
go back to reference Coutinho-Netto J, Abdul-Ghani AS, Bradford HF: Morphine suppression of neurotransmitter release evoked by sensory stimulation in vivo. Biochem Pharmacol 1982, 31: 1019–1023.CrossRefPubMed Coutinho-Netto J, Abdul-Ghani AS, Bradford HF: Morphine suppression of neurotransmitter release evoked by sensory stimulation in vivo. Biochem Pharmacol 1982, 31: 1019–1023.CrossRefPubMed
56.
go back to reference Akaishi T, Saito H, Ito Y, Ishige K, Ikegaya Y: Morphine augments excitatory synaptic transmission in the dentate gyrus through GABAergic disinhibition. Neurosci Res 2000, 38: 357–363.CrossRefPubMed Akaishi T, Saito H, Ito Y, Ishige K, Ikegaya Y: Morphine augments excitatory synaptic transmission in the dentate gyrus through GABAergic disinhibition. Neurosci Res 2000, 38: 357–363.CrossRefPubMed
57.
go back to reference Chiou LC, Huang LY: Mechanism underlying increased neuronal activity in the rat ventrolateral periaqueductal grey by a mu-opioid. J Physiol 1999, 518(Pt 2):551–559.PubMedCentralCrossRefPubMed Chiou LC, Huang LY: Mechanism underlying increased neuronal activity in the rat ventrolateral periaqueductal grey by a mu-opioid. J Physiol 1999, 518(Pt 2):551–559.PubMedCentralCrossRefPubMed
58.
go back to reference McQuiston AR, Saggau P: Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers. J Neurophysiol 2003, 90: 1936–1948.CrossRefPubMed McQuiston AR, Saggau P: Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers. J Neurophysiol 2003, 90: 1936–1948.CrossRefPubMed
59.
go back to reference Suzuki T, Nurrochmad A, Ozaki M, Khotib J, Nakamura A, Imai S, Shibasaki M, Yajima Y, Narita M: Effect of a selective GABA(B) receptor agonist baclofen on the mu-opioid receptor agonist-induced antinociceptive, emetic and rewarding effects. Neuropharmacology 2005, 49: 1121–1131.CrossRefPubMed Suzuki T, Nurrochmad A, Ozaki M, Khotib J, Nakamura A, Imai S, Shibasaki M, Yajima Y, Narita M: Effect of a selective GABA(B) receptor agonist baclofen on the mu-opioid receptor agonist-induced antinociceptive, emetic and rewarding effects. Neuropharmacology 2005, 49: 1121–1131.CrossRefPubMed
60.
go back to reference Gigg J, Tan AM, Finch DM: Glutamatergic excitatory responses of anterior cingulate neurons to stimulation of the mediodorsal thalamus and their regulation by GABA: an in vivo iontophoretic study. Cereb Cortex 1992, 2: 477–484.CrossRefPubMed Gigg J, Tan AM, Finch DM: Glutamatergic excitatory responses of anterior cingulate neurons to stimulation of the mediodorsal thalamus and their regulation by GABA: an in vivo iontophoretic study. Cereb Cortex 1992, 2: 477–484.CrossRefPubMed
61.
go back to reference Rajashekara V, Patel CN, Patel K, Purohit V, Yoburn BC: Chronic opioid antagonist treatment dose-dependently regulates mu-opioid receptors and trafficking proteins in vivo. Pharmacol Biochem Behav 2003, 75: 909–913.CrossRefPubMed Rajashekara V, Patel CN, Patel K, Purohit V, Yoburn BC: Chronic opioid antagonist treatment dose-dependently regulates mu-opioid receptors and trafficking proteins in vivo. Pharmacol Biochem Behav 2003, 75: 909–913.CrossRefPubMed
62.
go back to reference Gintzler AR, Chakrabarti S: Chronic morphine-induced plasticity among signalling molecules. Novartis Found Symp 2004, 261: 167–176. discussion 176–180, 191–163.CrossRefPubMed Gintzler AR, Chakrabarti S: Chronic morphine-induced plasticity among signalling molecules. Novartis Found Symp 2004, 261: 167–176. discussion 176–180, 191–163.CrossRefPubMed
63.
go back to reference Rothman RB: A review of the role of anti-opioid peptides in morphine tolerance and dependence. Synapse 1992, 12: 129–138.CrossRefPubMed Rothman RB: A review of the role of anti-opioid peptides in morphine tolerance and dependence. Synapse 1992, 12: 129–138.CrossRefPubMed
64.
go back to reference Mandyam CD, Thakker DR, Christensen JL, Standifer KM: Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk. J Pharmacol Exp Ther 2002, 302: 502–509.CrossRefPubMed Mandyam CD, Thakker DR, Christensen JL, Standifer KM: Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk. J Pharmacol Exp Ther 2002, 302: 502–509.CrossRefPubMed
65.
go back to reference Ueda H: Anti-opioid systems in morphine tolerance and addiction – locus-specific involvement of nociceptin and the NMDA receptor. Novartis Found Symp 2004, 261: 155–162. discussion 162–156, 191–153.CrossRefPubMed Ueda H: Anti-opioid systems in morphine tolerance and addiction – locus-specific involvement of nociceptin and the NMDA receptor. Novartis Found Symp 2004, 261: 155–162. discussion 162–156, 191–153.CrossRefPubMed
66.
go back to reference Abul-Husn NS, Sutak M, Milne B, Jhamandas K: Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists. Br J Pharmacol 2007, 151: 877–887.PubMedCentralCrossRefPubMed Abul-Husn NS, Sutak M, Milne B, Jhamandas K: Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists. Br J Pharmacol 2007, 151: 877–887.PubMedCentralCrossRefPubMed
67.
go back to reference Freeman JA, Nicholson C: Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 1975, 38: 369–382.PubMed Freeman JA, Nicholson C: Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 1975, 38: 369–382.PubMed
68.
go back to reference Paxinos G, Franklin K, (Eds): The mouse brain in stereotaxic coordinates. 2nd edition. San Diego: Academic press; 1997. Paxinos G, Franklin K, (Eds): The mouse brain in stereotaxic coordinates. 2nd edition. San Diego: Academic press; 1997.
Metadata
Title
Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice
Authors
Tsung-Chieh Chen
Ying-Ying Cheng
Wei-Zen Sun
Bai-Chuang Shyu
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2008
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-4-41

Other articles of this Issue 1/2008

Molecular Pain 1/2008 Go to the issue