Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods: a pilot analysis

Authors: Elin Folkesson, Aleksandra Turkiewicz, Martin Englund, Patrik Önnerfjord

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

Proteomics is an emerging field in the study of joint disease. Our two aims with this pilot analysis were to compare healthy human knee articular cartilage with meniscus, two tissues both known to become affected in the osteoarthritic disease process, and to compare two mass spectrometry (MS)-based methods: data-dependent acquisition (DDA) and data-independent acquisition (DIA).

Methods

Healthy knee articular cartilage taken from the medial tibial condyle and medial meniscus samples taken from the body region were obtained from three adult forensic medicine cases. Proteins were extracted from tissue pieces and prepared for MS analysis. Each sample was subjected to liquid chromatography (LC)-MS/MS analysis using an Orbitrap mass spectrometer, and run in both DDA and DIA mode. Linear mixed effects models were used for statistical analysis.

Results

A total of 653 proteins were identified in the DDA analysis, of which the majority was present in both tissue types. Only proteins with quantitation information in both tissues (n = 90) were selected for more detailed analysis, of which the majority did not statistically significantly differ in abundance between the two tissue types, in either of the MS analyses. However, 21 proteins were statistically significantly different (p < 0.05) between meniscus and cartilage in the DIA analysis. Out of these, 11 proteins were also significantly different in the DDA analysis. Aggrecan core protein was the most abundant protein in articular cartilage and significantly differed between the two tissues in both methods. The corresponding protein in meniscus was serum albumin. Dermatopontin exhibited the highest meniscus vs articular cartilage ratio among the statistically significant proteins. The DIA method led to narrower confidence intervals for the abundance differences between the two tissue types than DDA.

Conclusions

Although articular cartilage and meniscus had similar proteomic composition, we detected several differences by MS. Between the two analyses, DIA yielded more precise estimates and more statistically significant different proteins than DDA, and had no missing values, which makes it preferable for future LC-MS/MS analyses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Englund M, Haugen IK, Guermazi A, Roemer FW, Niu J, Neogi T, et al. Evidence that meniscus damage may be a component of osteoarthritis: the Framingham study. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2016;24:270–3.CrossRef Englund M, Haugen IK, Guermazi A, Roemer FW, Niu J, Neogi T, et al. Evidence that meniscus damage may be a component of osteoarthritis: the Framingham study. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2016;24:270–3.CrossRef
2.
go back to reference Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports health. 2012;4:340–51.CrossRef Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports health. 2012;4:340–51.CrossRef
3.
go back to reference Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28:269–87.CrossRef Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28:269–87.CrossRef
4.
go back to reference Hochberg MC. Rheumatology. Sixth edition. Ed. Philadelphia, PA: Mosby/Elsevier; 2015. Hochberg MC. Rheumatology. Sixth edition. Ed. Philadelphia, PA: Mosby/Elsevier; 2015.
5.
go back to reference Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017. Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017.
6.
go back to reference Cook JL, Kuroki K, Stoker AM, Monibi FA, Roller BL. Meniscal biology in health and disease. Connect Tissue Res. 2017;58:225–37.CrossRef Cook JL, Kuroki K, Stoker AM, Monibi FA, Roller BL. Meniscal biology in health and disease. Connect Tissue Res. 2017;58:225–37.CrossRef
7.
go back to reference Ross MH, Pawlina W. Histology: a text and atlas. 5th ed: Lippincott Williams & Wilkins; 2006. Ross MH, Pawlina W. Histology: a text and atlas. 5th ed: Lippincott Williams & Wilkins; 2006.
8.
go back to reference Önnerfjord P, Khabut A, Reinholt FP, Svensson O, Heinegård D. Quantitative proteomic analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities between subgroups. J Biol Chem. 2012;287:18913–24.CrossRef Önnerfjord P, Khabut A, Reinholt FP, Svensson O, Heinegård D. Quantitative proteomic analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities between subgroups. J Biol Chem. 2012;287:18913–24.CrossRef
9.
go back to reference Schubert OT, Rost HL, Collins BC, Rosenberger G, Aebersold R. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc. 2017;12:1289–94.CrossRef Schubert OT, Rost HL, Collins BC, Rosenberger G, Aebersold R. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc. 2017;12:1289–94.CrossRef
10.
go back to reference Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.CrossRef Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.CrossRef
11.
go back to reference Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.CrossRef Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.CrossRef
12.
go back to reference Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem (Palo Alto, Calif). 2016;9:449–72.CrossRef Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem (Palo Alto, Calif). 2016;9:449–72.CrossRef
13.
go back to reference Chapman JD, Goodlett DR, Masselon CD. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev. 2014;33:452–70.CrossRef Chapman JD, Goodlett DR, Masselon CD. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev. 2014;33:452–70.CrossRef
14.
go back to reference Wang Y, Li Y, Khabut A, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment. Matrix Biol. 2017;63:11–22.CrossRef Wang Y, Li Y, Khabut A, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment. Matrix Biol. 2017;63:11–22.CrossRef
15.
go back to reference Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006;5:144–56.CrossRef Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006;5:144–56.CrossRef
16.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
17.
go back to reference Greenwald RA, Josephson AS, Diamond HS, Tsang A. Human cartilage lysozyme. J Clin Invest. 1972;51:2264–70.CrossRef Greenwald RA, Josephson AS, Diamond HS, Tsang A. Human cartilage lysozyme. J Clin Invest. 1972;51:2264–70.CrossRef
18.
go back to reference Fleming A. On a remarkable Bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character. 1922;93:306–17.CrossRef Fleming A. On a remarkable Bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character. 1922;93:306–17.CrossRef
19.
go back to reference Schubert M, Franklin EC. Interaction in solution of lysozyme with chondroitin sulfate and its parent Proteinpolysaccharide1. J Am Chem Soc. 1961;83:2920–5.CrossRef Schubert M, Franklin EC. Interaction in solution of lysozyme with chondroitin sulfate and its parent Proteinpolysaccharide1. J Am Chem Soc. 1961;83:2920–5.CrossRef
20.
go back to reference Thonar EJ, Feist SB, Fassbender K, Lenz ME, Matijevitch BL, Kuettner KE. Quantification of hen egg white lysozyme in cartilage by an enzyme-linked immunosorbent assay. Connect Tissue Res. 1988;17:181–97.CrossRef Thonar EJ, Feist SB, Fassbender K, Lenz ME, Matijevitch BL, Kuettner KE. Quantification of hen egg white lysozyme in cartilage by an enzyme-linked immunosorbent assay. Connect Tissue Res. 1988;17:181–97.CrossRef
21.
go back to reference Paulsen F, Pufe T, Conradi L, Varoga D, Tsokos M, Papendieck J, et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol. 2002;198:369–77.CrossRef Paulsen F, Pufe T, Conradi L, Varoga D, Tsokos M, Papendieck J, et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol. 2002;198:369–77.CrossRef
22.
go back to reference Thapa N, Lee BH, Kim IS. TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol. 2007;39:2183–94.CrossRef Thapa N, Lee BH, Kim IS. TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol. 2007;39:2183–94.CrossRef
23.
go back to reference Reinboth B, Thomas J, Hanssen E, Gibson MA. Beta ig-h3 interacts directly with biglycan and decorin, promotes collagen VI aggregation, and participates in ternary complexing with these macromolecules. J Biol Chem. 2006;281:7816–24.CrossRef Reinboth B, Thomas J, Hanssen E, Gibson MA. Beta ig-h3 interacts directly with biglycan and decorin, promotes collagen VI aggregation, and participates in ternary complexing with these macromolecules. J Biol Chem. 2006;281:7816–24.CrossRef
24.
go back to reference Ni GX, Li Z, Zhou YZ. The role of small leucine-rich proteoglycans in osteoarthritis pathogenesis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2014;22:896–903.CrossRef Ni GX, Li Z, Zhou YZ. The role of small leucine-rich proteoglycans in osteoarthritis pathogenesis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2014;22:896–903.CrossRef
25.
go back to reference Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.CrossRef Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.CrossRef
26.
go back to reference Lorenzo P, Aspberg A, Önnerfjord P, Bayliss MT, Neame PJ, Heinegård D. Identification and characterization of asporin. A novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem. 2001;276:12201–11.CrossRef Lorenzo P, Aspberg A, Önnerfjord P, Bayliss MT, Neame PJ, Heinegård D. Identification and characterization of asporin. A novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem. 2001;276:12201–11.CrossRef
27.
go back to reference Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet. 2005;37:138–44.CrossRef Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet. 2005;37:138–44.CrossRef
28.
go back to reference Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K, Ikegawa S. Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem. 2007;282:32185–92.CrossRef Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K, Ikegawa S. Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem. 2007;282:32185–92.CrossRef
29.
go back to reference Wilson CG, Nishimuta JF, Levenston ME. Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly. Tissue Eng Part A. 2009;15:1513–22.CrossRef Wilson CG, Nishimuta JF, Levenston ME. Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly. Tissue Eng Part A. 2009;15:1513–22.CrossRef
30.
go back to reference McAlinden A, Dudhia J, Bolton MC, Lorenzo P, Heinegård D, Bayliss MT. Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2001;9:33–41.CrossRef McAlinden A, Dudhia J, Bolton MC, Lorenzo P, Heinegård D, Bayliss MT. Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2001;9:33–41.CrossRef
31.
go back to reference Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB. Structure and function of aggrecan. Cell Res. 2002;12:19–32.CrossRef Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB. Structure and function of aggrecan. Cell Res. 2002;12:19–32.CrossRef
32.
go back to reference Zimmermann DR, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan versican. EMBO J. 1989;8:2975–81.CrossRef Zimmermann DR, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan versican. EMBO J. 1989;8:2975–81.CrossRef
33.
go back to reference Grover J, Roughley PJ. Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan. Biochem J. 1993;291(Pt 2):361–7.CrossRef Grover J, Roughley PJ. Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan. Biochem J. 1993;291(Pt 2):361–7.CrossRef
34.
go back to reference Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14:617–23.CrossRef Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14:617–23.CrossRef
35.
go back to reference Lewandowska K, Choi HU, Rosenberg LC, Sasse J, Neame PJ, Culp LA. Extracellular matrix adhesion-promoting activities of a dermatan sulfate proteoglycan-associated protein (22K) from bovine fetal skin. J Cell Sci. 1991;99(Pt 3):657–68.PubMed Lewandowska K, Choi HU, Rosenberg LC, Sasse J, Neame PJ, Culp LA. Extracellular matrix adhesion-promoting activities of a dermatan sulfate proteoglycan-associated protein (22K) from bovine fetal skin. J Cell Sci. 1991;99(Pt 3):657–68.PubMed
36.
go back to reference Roller BL, Monibi F, Stoker AM, Bal BS, Stannard JP, Cook JL. Characterization of meniscal pathology using molecular and proteomic analyses. J Knee Surg. 2015;28:496–505.CrossRef Roller BL, Monibi F, Stoker AM, Bal BS, Stannard JP, Cook JL. Characterization of meniscal pathology using molecular and proteomic analyses. J Knee Surg. 2015;28:496–505.CrossRef
37.
go back to reference Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2005;13:548–60.CrossRef Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2005;13:548–60.CrossRef
38.
go back to reference Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10:90–5.CrossRef Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10:90–5.CrossRef
39.
go back to reference Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.PubMed Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.PubMed
40.
go back to reference Wiedlocha A. Following angiogenin during angiogenesis: a journey from the cell surface to the nucleolus. Arch Immunol Ther Exp. 1999;47:299–305. Wiedlocha A. Following angiogenin during angiogenesis: a journey from the cell surface to the nucleolus. Arch Immunol Ther Exp. 1999;47:299–305.
41.
go back to reference Tello-Montoliu A, Patel JV, Lip GY. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost. 2006;4:1864–74.CrossRef Tello-Montoliu A, Patel JV, Lip GY. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost. 2006;4:1864–74.CrossRef
42.
go back to reference Hoang TT, Raines RT. Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Res. 2017;45:818–31.CrossRef Hoang TT, Raines RT. Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Res. 2017;45:818–31.CrossRef
43.
go back to reference Melinte R, Jung I, Georgescu L, Gurzu SVEGF. CD31 expression in arthritic synovium and cartilage of human knee joints. Romanian J Morphol Embryol. 2012;53:911–5. Melinte R, Jung I, Georgescu L, Gurzu SVEGF. CD31 expression in arthritic synovium and cartilage of human knee joints. Romanian J Morphol Embryol. 2012;53:911–5.
44.
go back to reference Gurzu S, Turdean SG, Pop ST, Zazgyva A, Roman CO, Opris M, et al. Different synovial vasculogenic profiles of primary, rapidly destructive and osteonecrosis-induced hip osteoarthritis. An immunohistochemistry study Int Orthop. 2017;41:1107–12.PubMed Gurzu S, Turdean SG, Pop ST, Zazgyva A, Roman CO, Opris M, et al. Different synovial vasculogenic profiles of primary, rapidly destructive and osteonecrosis-induced hip osteoarthritis. An immunohistochemistry study Int Orthop. 2017;41:1107–12.PubMed
45.
go back to reference Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000Res. 2016;5. Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000Res. 2016;5.
Metadata
Title
Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods: a pilot analysis
Authors
Elin Folkesson
Aleksandra Turkiewicz
Martin Englund
Patrik Önnerfjord
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2346-6

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue