Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Differential modulation of nicotine-induced gemcitabine resistance by GABA receptor agonists in pancreatic cancer cell xenografts and in vitro

Authors: Jheelam Banerjee, Hussein AN Al-Wadei, Mohammed H Al-Wadei, Koami Dagnon, Hildegard M Schuller

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Pancreatic cancer is frequently resistant to cancer therapeutics. Smoking and alcoholism are risk factors and pancreatic cancer patients often undergo nicotine replacement therapy (NRT) and treatment for alcohol dependence. Based on our report that low dose nicotine within the range of NRT causes gemcitabine resistance in pancreatic cancer, our current study has tested the hypothesis that GABA or the selective GABA-B-R agonist baclofen used to treat alcohol dependence reverse nicotine-induced gemcitabine resistance in pancreatic cancer.

Methods

Using mouse xenografts from the gemcitabine--sensitive pancreatic cancer cell line BXPC-3, we tested the effects of GABA and baclofen on nicotine-induced gemcitabine resistance. The levels of cAMP, p-SRC, p-ERK, p-AKT, p-CREB and cleaved caspase-3 in xenograft tissues were determined by ELISA assays. Expression of the two GABA-B receptors, metalloproteinase-2 and 9 and EGR-1 in xenograft tissues was monitored by Western blotting. Mechanistic studies were conducted in vitro, using cell lines BXPC-3 and PANC-1 and included analyses of cAMP production by ELISA assay and Western blots to determine protein expression of GABA-B receptors, metalloproteinase-2 and 9 and EGR-1.

Results

Our data show that GABA was as effective as gemcitabine and significantly reversed gemcitabine resistance induced by low dose nicotine in xenografts whereas baclofen did not. These effects of GABA were accompanied by decreases in cAMP, p-CREB, p-AKT, p-Src, p-ERK metalloproteinases-9 and -2 and EGR-1 and increases in cleaved caspase-3 in xenografts whereas baclofen had the opposite effects. In vitro exposure of cells to single doses or seven days of nicotine induced the protein expression of MMP-2, MMP-9 and EGR-1 and these responses were blocked by GABA. Baclofen downregulated the protein expression of GABA-B-Rs in xenograft tissues and in cells exposed to baclofen for seven days in vitro. This response was accompanied by inversed baclofen effects from inhibition of cAMP formation after single dose exposures to stimulation of cAMP formation in cells pretreated for seven days.

Conclusions

These findings suggest GABA as a promising single agent for the therapy of pancreatic cancer and to overcome nicotine-induced gemcitabine resistance whereas treatment with baclofen may increase gemcitabine resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Almhanna K, Philip PA: Defining new paradigms for the treatment of pancreatic cancer. Curr Treat Options Oncol. 2011, 12 (2): 111-125. 10.1007/s11864-011-0150-8.CrossRefPubMed Almhanna K, Philip PA: Defining new paradigms for the treatment of pancreatic cancer. Curr Treat Options Oncol. 2011, 12 (2): 111-125. 10.1007/s11864-011-0150-8.CrossRefPubMed
2.
go back to reference Lowenfels AB, Maisonneuve P: Risk factors for pancreatic cancer. J Cell Biochem. 2005, 95 (4): 649-656. 10.1002/jcb.20461.CrossRefPubMed Lowenfels AB, Maisonneuve P: Risk factors for pancreatic cancer. J Cell Biochem. 2005, 95 (4): 649-656. 10.1002/jcb.20461.CrossRefPubMed
3.
go back to reference Gapstur SM, Jacobs EJ, Deka A, McCullough ML, Patel AV, Thun MJ: Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med. 2011, 171 (5): 444-451.CrossRefPubMed Gapstur SM, Jacobs EJ, Deka A, McCullough ML, Patel AV, Thun MJ: Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med. 2011, 171 (5): 444-451.CrossRefPubMed
4.
go back to reference Addolorato G, Leggio L, Ferrulli A, Cardone S, Bedogni G, Caputo F, Gasbarrini G, Landolfi R: Dose–response effect of baclofen in reducing daily alcohol intake in alcohol dependence: secondary analysis of a randomized, double-blind, placebo-controlled trial. Alcohol Alcohol. 2011, 46 (3): 312-317. 10.1093/alcalc/agr017.CrossRefPubMed Addolorato G, Leggio L, Ferrulli A, Cardone S, Bedogni G, Caputo F, Gasbarrini G, Landolfi R: Dose–response effect of baclofen in reducing daily alcohol intake in alcohol dependence: secondary analysis of a randomized, double-blind, placebo-controlled trial. Alcohol Alcohol. 2011, 46 (3): 312-317. 10.1093/alcalc/agr017.CrossRefPubMed
5.
6.
go back to reference Thorne Research I: Gamma-aminobutyric acid. Altern Med Rev. 2007, 12: 274- Thorne Research I: Gamma-aminobutyric acid. Altern Med Rev. 2007, 12: 274-
7.
go back to reference Al-Wadei HA, Plummer HK, Schuller HM: Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid. Carcinogenesis. 2009, 30 (3): 506-511. 10.1093/carcin/bgp010.CrossRefPubMedPubMedCentral Al-Wadei HA, Plummer HK, Schuller HM: Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid. Carcinogenesis. 2009, 30 (3): 506-511. 10.1093/carcin/bgp010.CrossRefPubMedPubMedCentral
8.
go back to reference Al-Wadei MH, Al-Wadei HA, Schuller HM: Gamma-amino butyric acid (GABA) prevents the induction of nicotinic receptor-regulated signaling by chronic ethanol in pancreatic cancer cells and normal duct epithelia. Cancer Prev Res (Phila). 2013, 6 (2): 139-148. 10.1158/1940-6207.CAPR-12-0388.CrossRef Al-Wadei MH, Al-Wadei HA, Schuller HM: Gamma-amino butyric acid (GABA) prevents the induction of nicotinic receptor-regulated signaling by chronic ethanol in pancreatic cancer cells and normal duct epithelia. Cancer Prev Res (Phila). 2013, 6 (2): 139-148. 10.1158/1940-6207.CAPR-12-0388.CrossRef
9.
10.
go back to reference Banerjee J, Al-Wadei HA, Schuller HM: Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts. Eur J Cancer. 2013, 49 (5): 1152-1158. 10.1016/j.ejca.2012.10.015.CrossRefPubMed Banerjee J, Al-Wadei HA, Schuller HM: Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts. Eur J Cancer. 2013, 49 (5): 1152-1158. 10.1016/j.ejca.2012.10.015.CrossRefPubMed
11.
go back to reference Mancuso A, Calabro F, Sternberg CN: Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol. 2006, 58 (3): 231-241. 10.1016/j.critrevonc.2006.02.004.CrossRefPubMed Mancuso A, Calabro F, Sternberg CN: Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol. 2006, 58 (3): 231-241. 10.1016/j.critrevonc.2006.02.004.CrossRefPubMed
12.
go back to reference Giovannetti E, Mey V, Loni L, Nannizzi S, Barsanti G, Savarino G, Ricciardi S, Del Tacca M, Danesi R: Cytotoxic activity of gemcitabine and correlation with expression profile of drug-related genes in human lymphoid cells. Pharmacol Res. 2007, 55 (4): 343-349. 10.1016/j.phrs.2007.01.003.CrossRefPubMed Giovannetti E, Mey V, Loni L, Nannizzi S, Barsanti G, Savarino G, Ricciardi S, Del Tacca M, Danesi R: Cytotoxic activity of gemcitabine and correlation with expression profile of drug-related genes in human lymphoid cells. Pharmacol Res. 2007, 55 (4): 343-349. 10.1016/j.phrs.2007.01.003.CrossRefPubMed
13.
go back to reference Fryer RA, Barlett B, Galustian C, Dalgleish AG: Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD lenalidomide. Anticancer Res. 2011, 31 (11): 3747-3756.PubMed Fryer RA, Barlett B, Galustian C, Dalgleish AG: Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD lenalidomide. Anticancer Res. 2011, 31 (11): 3747-3756.PubMed
14.
go back to reference Mathieson W, Kirkland S, Leonard R, Thomas GA: Antimicrobials and in vitro systems: antibiotics and antimycotics alter the proteome of MCF-7 cells in culture. J Cell Biochem. 2011, 112 (8): 2170-2178. 10.1002/jcb.23143.CrossRefPubMed Mathieson W, Kirkland S, Leonard R, Thomas GA: Antimicrobials and in vitro systems: antibiotics and antimycotics alter the proteome of MCF-7 cells in culture. J Cell Biochem. 2011, 112 (8): 2170-2178. 10.1002/jcb.23143.CrossRefPubMed
15.
go back to reference Taylor RG, Woodman G, Clarke SW: Plasma nicotine concentration and the white blood cell count in smokers. Thorax. 1986, 41 (5): 407-408. 10.1136/thx.41.5.407.CrossRefPubMedPubMedCentral Taylor RG, Woodman G, Clarke SW: Plasma nicotine concentration and the white blood cell count in smokers. Thorax. 1986, 41 (5): 407-408. 10.1136/thx.41.5.407.CrossRefPubMedPubMedCentral
16.
go back to reference Homsy W, Yan K, Houle JM, Besner JG, Gossard D, Pierce CH, Caille G: Plasma levels of nicotine and safety of smokers wearing transdermal delivery systems during multiple simultaneous intake of nicotine and during exercise. J Clin Pharmacol. 1997, 37 (8): 728-736. 10.1002/j.1552-4604.1997.tb04360.x.CrossRefPubMed Homsy W, Yan K, Houle JM, Besner JG, Gossard D, Pierce CH, Caille G: Plasma levels of nicotine and safety of smokers wearing transdermal delivery systems during multiple simultaneous intake of nicotine and during exercise. J Clin Pharmacol. 1997, 37 (8): 728-736. 10.1002/j.1552-4604.1997.tb04360.x.CrossRefPubMed
17.
go back to reference Al-Wadei HA, Al-Wadei MH, Ullah MF, Schuller HM: Celecoxib and GABA cooperatively prevent the progression of pancreatic cancer in vitro and in xenograft models of stress-free and stress-exposed mice. PLoS One. 2012, 7 (8): e43376-10.1371/journal.pone.0043376.CrossRefPubMedPubMedCentral Al-Wadei HA, Al-Wadei MH, Ullah MF, Schuller HM: Celecoxib and GABA cooperatively prevent the progression of pancreatic cancer in vitro and in xenograft models of stress-free and stress-exposed mice. PLoS One. 2012, 7 (8): e43376-10.1371/journal.pone.0043376.CrossRefPubMedPubMedCentral
18.
go back to reference Al-Wadei MH, Al-Wadei HA, Schuller HM: Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res. 2012, 10 (2): 239-249. 10.1158/1541-7786.MCR-11-0332.CrossRefPubMed Al-Wadei MH, Al-Wadei HA, Schuller HM: Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res. 2012, 10 (2): 239-249. 10.1158/1541-7786.MCR-11-0332.CrossRefPubMed
19.
go back to reference Pan X, Arumugam T, Yamamoto T, Levin PA, Ramachandran V, Ji B, Lopez-Berestein G, Vivas-Mejia PE, Sood AK, McConkey DJ, Logsdon CD: Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res. 2008, 14 (24): 8143-8151. 10.1158/1078-0432.CCR-08-1539.CrossRefPubMedPubMedCentral Pan X, Arumugam T, Yamamoto T, Levin PA, Ramachandran V, Ji B, Lopez-Berestein G, Vivas-Mejia PE, Sood AK, McConkey DJ, Logsdon CD: Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res. 2008, 14 (24): 8143-8151. 10.1158/1078-0432.CCR-08-1539.CrossRefPubMedPubMedCentral
20.
go back to reference Al-Wadei MH, Al-Wadei HA, Schuller HM: Effects of chronic nicotine on the autocrine regulation of pancreatic cancer cells and pancreatic duct epithelial cells by stimulatory and inhibitory neurotransmitters. Carcinogenesis. 2012, 33 (9): 1745-1753. 10.1093/carcin/bgs229.CrossRefPubMedPubMedCentral Al-Wadei MH, Al-Wadei HA, Schuller HM: Effects of chronic nicotine on the autocrine regulation of pancreatic cancer cells and pancreatic duct epithelial cells by stimulatory and inhibitory neurotransmitters. Carcinogenesis. 2012, 33 (9): 1745-1753. 10.1093/carcin/bgs229.CrossRefPubMedPubMedCentral
21.
go back to reference Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, Chellappan SP: Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia. 2012, 14 (12): 1102-1114.CrossRefPubMedPubMedCentral Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, Chellappan SP: Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia. 2012, 14 (12): 1102-1114.CrossRefPubMedPubMedCentral
22.
go back to reference Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S: Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci U S A. 2006, 103 (16): 6332-6337. 10.1073/pnas.0509313103.CrossRefPubMedPubMedCentral Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S: Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci U S A. 2006, 103 (16): 6332-6337. 10.1073/pnas.0509313103.CrossRefPubMedPubMedCentral
23.
go back to reference Fulga C, Zugravu A, Fulga I: The analgesic effect of gemcitabine in mice. Rom J Intern Med. 2006, 44 (3): 335-350.PubMed Fulga C, Zugravu A, Fulga I: The analgesic effect of gemcitabine in mice. Rom J Intern Med. 2006, 44 (3): 335-350.PubMed
24.
go back to reference Lazar M, Sullivan J, Chipitsyna G, Gong Q, Ng CY, Salem AF, Aziz T, Witkiewicz A, Denhardt DT, Yeo CJ, Arafat HA: Involvement of osteopontin in the matrix-degrading and proangiogenic changes mediated by nicotine in pancreatic cancer cells. J Gastrointest Surg. 2010, 14 (10): 1566-1577. 10.1007/s11605-010-1338-0.CrossRefPubMed Lazar M, Sullivan J, Chipitsyna G, Gong Q, Ng CY, Salem AF, Aziz T, Witkiewicz A, Denhardt DT, Yeo CJ, Arafat HA: Involvement of osteopontin in the matrix-degrading and proangiogenic changes mediated by nicotine in pancreatic cancer cells. J Gastrointest Surg. 2010, 14 (10): 1566-1577. 10.1007/s11605-010-1338-0.CrossRefPubMed
25.
go back to reference Thiel G, Cibelli G: Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002, 193 (3): 287-292. 10.1002/jcp.10178.CrossRefPubMed Thiel G, Cibelli G: Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002, 193 (3): 287-292. 10.1002/jcp.10178.CrossRefPubMed
26.
go back to reference Myung DS, Park YL, Kim N, Chung CY, Park HC, Kim JS, Cho SB, Lee WS, Lee JH, Joo YE: Expression of early growth response-1 in colorectal cancer and its relation to tumor cell proliferation and apoptosis. Oncol Rep. 2014, 31 (2): 788-794.PubMed Myung DS, Park YL, Kim N, Chung CY, Park HC, Kim JS, Cho SB, Lee WS, Lee JH, Joo YE: Expression of early growth response-1 in colorectal cancer and its relation to tumor cell proliferation and apoptosis. Oncol Rep. 2014, 31 (2): 788-794.PubMed
28.
go back to reference Seki T, Kokuryo T, Yokoyama Y, Suzuki H, Itatsu K, Nakagawa A, Mizutani T, Miyake T, Uno M, Yamauchi K, Nagino M: Antitumor effects of alpha-bisabolol against pancreatic cancer. Cancer Sci. 2011, 102 (12): 2199-2205. 10.1111/j.1349-7006.2011.02082.x.CrossRefPubMed Seki T, Kokuryo T, Yokoyama Y, Suzuki H, Itatsu K, Nakagawa A, Mizutani T, Miyake T, Uno M, Yamauchi K, Nagino M: Antitumor effects of alpha-bisabolol against pancreatic cancer. Cancer Sci. 2011, 102 (12): 2199-2205. 10.1111/j.1349-7006.2011.02082.x.CrossRefPubMed
29.
go back to reference Jutooru I, Chadalapaka G, Chintharlapalli S, Papineni S, Safe S: Induction of apoptosis and nonsteroidal anti-inflammatory drug-activated gene 1 in pancreatic cancer cells by a glycyrrhetinic acid derivative. Mol Carcinog. 2009, 48 (8): 692-702. 10.1002/mc.20518.CrossRefPubMedPubMedCentral Jutooru I, Chadalapaka G, Chintharlapalli S, Papineni S, Safe S: Induction of apoptosis and nonsteroidal anti-inflammatory drug-activated gene 1 in pancreatic cancer cells by a glycyrrhetinic acid derivative. Mol Carcinog. 2009, 48 (8): 692-702. 10.1002/mc.20518.CrossRefPubMedPubMedCentral
30.
go back to reference Ichino N, Yamada K, Nishii K, Sawada H, Nagatsu T, Ishiguro H: Increase of transcriptional levels of egr-1 and nur77 genes due to both nicotine treatment and withdrawal in pheochromocytoma cells. J Neural Transm. 2002, 109 (7–8): 1015-1022.CrossRefPubMed Ichino N, Yamada K, Nishii K, Sawada H, Nagatsu T, Ishiguro H: Increase of transcriptional levels of egr-1 and nur77 genes due to both nicotine treatment and withdrawal in pheochromocytoma cells. J Neural Transm. 2002, 109 (7–8): 1015-1022.CrossRefPubMed
31.
go back to reference Tai TC, Wong-Faull DC, Claycomb R, Wong DL: Hypoxia and adrenergic function: molecular mechanisms related to Egr-1 and Sp1 activation. Brain Res. 2010, 1353: 14-27.CrossRefPubMed Tai TC, Wong-Faull DC, Claycomb R, Wong DL: Hypoxia and adrenergic function: molecular mechanisms related to Egr-1 and Sp1 activation. Brain Res. 2010, 1353: 14-27.CrossRefPubMed
32.
go back to reference Strimpakos A, Saif MW, Syrigos KN: Pancreatic cancer: from molecular pathogenesis to targeted therapy. Cancer Metastasis Rev. 2008, 27 (3): 495-522. 10.1007/s10555-008-9134-y.CrossRefPubMed Strimpakos A, Saif MW, Syrigos KN: Pancreatic cancer: from molecular pathogenesis to targeted therapy. Cancer Metastasis Rev. 2008, 27 (3): 495-522. 10.1007/s10555-008-9134-y.CrossRefPubMed
33.
go back to reference Kumar K, Sharma S, Kumar P, Deshmukh R: Therapeutic potential of GABA receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav. 2013, 110C: 174-184.CrossRef Kumar K, Sharma S, Kumar P, Deshmukh R: Therapeutic potential of GABA receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav. 2013, 110C: 174-184.CrossRef
34.
go back to reference Joseph J, Niggemann B, Zaenker KS, Entschladen F: The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 2002, 62 (22): 6467-6469.PubMed Joseph J, Niggemann B, Zaenker KS, Entschladen F: The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 2002, 62 (22): 6467-6469.PubMed
35.
go back to reference Schuller HM, Al-Wadei HA, Majidi M: Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis. 2008, 29 (10): 1979-1985. 10.1093/carcin/bgn041.CrossRefPubMedPubMedCentral Schuller HM, Al-Wadei HA, Majidi M: Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis. 2008, 29 (10): 1979-1985. 10.1093/carcin/bgn041.CrossRefPubMedPubMedCentral
36.
go back to reference Al-Wadei HA, Al-Wadei MH, Ullah MF, Schuller HM: Gamma-amino butyric acid inhibits the nicotine-imposed stimulatory challenge in xenograft models of non-small cell lung carcinoma. Curr Cancer Drug Targets. 2012, 12 (2): 97-106. 10.2174/156800912799095171.CrossRefPubMed Al-Wadei HA, Al-Wadei MH, Ullah MF, Schuller HM: Gamma-amino butyric acid inhibits the nicotine-imposed stimulatory challenge in xenograft models of non-small cell lung carcinoma. Curr Cancer Drug Targets. 2012, 12 (2): 97-106. 10.2174/156800912799095171.CrossRefPubMed
37.
go back to reference Wu F, Yang N, Toure A, Jin Z, Xu X: Germinated brown rice and its role in human health. Crit Rev Food Sci Nutr. 2013, 53 (5): 451-463. 10.1080/10408398.2010.542259.CrossRefPubMed Wu F, Yang N, Toure A, Jin Z, Xu X: Germinated brown rice and its role in human health. Crit Rev Food Sci Nutr. 2013, 53 (5): 451-463. 10.1080/10408398.2010.542259.CrossRefPubMed
38.
go back to reference Bach B, Sauvage F-X, Dequin S, Camarasa C: Role of γ-aminobutyric acid as a source of nitrogen and succinate in wine. Am J Enol Vitic. 2009, 60: 508-516. Bach B, Sauvage F-X, Dequin S, Camarasa C: Role of γ-aminobutyric acid as a source of nitrogen and succinate in wine. Am J Enol Vitic. 2009, 60: 508-516.
39.
go back to reference Takehara A, Hosokawa M, Eguchi H, Ohigashi H, Ishikawa O, Nakamura Y, Nakagawa H: Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res. 2007, 67 (20): 9704-9712. 10.1158/0008-5472.CAN-07-2099.CrossRefPubMed Takehara A, Hosokawa M, Eguchi H, Ohigashi H, Ishikawa O, Nakamura Y, Nakagawa H: Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res. 2007, 67 (20): 9704-9712. 10.1158/0008-5472.CAN-07-2099.CrossRefPubMed
40.
go back to reference Watts VJ, Neve KA: Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol Ther. 2005, 106 (3): 405-421. 10.1016/j.pharmthera.2004.12.005.CrossRefPubMed Watts VJ, Neve KA: Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol Ther. 2005, 106 (3): 405-421. 10.1016/j.pharmthera.2004.12.005.CrossRefPubMed
Metadata
Title
Differential modulation of nicotine-induced gemcitabine resistance by GABA receptor agonists in pancreatic cancer cell xenografts and in vitro
Authors
Jheelam Banerjee
Hussein AN Al-Wadei
Mohammed H Al-Wadei
Koami Dagnon
Hildegard M Schuller
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-725

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine