Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Primary research

Differential genetic mutations of ectoderm, mesoderm, and endoderm-derived tumors in TCGA database

Authors: Xingjie Gao, Xiaoteng Cui, Xinxin Zhang, Chunyan Zhao, Nan Zhang, Yan Zhao, Yuanyuan Ren, Chao Su, Lin Ge, Shaoyuan Wu, Jie Yang

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

In terms of biological behavior, gene regulation, or signaling pathways, there is a certain similarity between tumorigenesis and embryonic development of humans. Three germ layer structure exhibits the distinct ability to form specific tissues and organs.

Methods

The present study set out to investigate the genetic mutation characteristics of germ layer differentiation-related genes using the tumor cases of the cancer genome atlas (TCGA) database.

Results

These tumor samples were divided into three groups, including the ectoderm, mesoderm, and endoderm. Children cases less than 9 years old accounted for a larger proportion for the cases in the ectoderm and mesoderm groups; whereas the middle-aged and elderly individuals (from 50 to 89 years old) were more susceptible to tumors of endoderm. There was a better prognosis for the cases of mesoderm, especially the male with the race of White, compared with the other groups. A missense mutation was frequently detected for the cases of ectoderm and endoderm, while deletion mutation was common for that of mesoderm. We could not identify the ectoderm, mesoderm, or endoderm-specific mutated genes or variants with high mutation frequency. However, there was a relatively higher mutation incidence of endoderm markers (GATA6, FOXA2, GATA4, AFP) in the endoderm group, compared with the groups of ectoderm and mesoderm. Additionally, four members (SMO, GLI1, GLI2, GLI3) within the Hedgehog signaling pathway genes showed a relatively higher mutation rate in the endoderm group than the other two groups.

Conclusions

TCGA tumors of ectoderm, mesoderm, and endoderm groups exhibit the distinct subject distribution, survival status, and genomic alteration characteristics. The synergistic mutation effect of specific genes closely related to embryonic development may contribute to the tumorigenesis of tissues or organs derived from the specific germ layers. This study provides a novel reference for exploring the functional connection between embryogenesis and tumorigenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gillott C. Embryonic development. In: Gillott C, editor. Entomology. Boston: Springer; 1980. p. 537–62.CrossRef Gillott C. Embryonic development. In: Gillott C, editor. Entomology. Boston: Springer; 1980. p. 537–62.CrossRef
2.
go back to reference Liu A-X, Liu X-M, Zhang Y-L, Huang H-F, Xu C-M. Physiology of embryonic development. In: Huang H-F, Sheng J-Z, editors. Gamete and embryo-fetal origins of adult diseases. Dordrecht: Springer; 2014. p. 39–59.CrossRef Liu A-X, Liu X-M, Zhang Y-L, Huang H-F, Xu C-M. Physiology of embryonic development. In: Huang H-F, Sheng J-Z, editors. Gamete and embryo-fetal origins of adult diseases. Dordrecht: Springer; 2014. p. 39–59.CrossRef
3.
go back to reference Cook CS, Sulik KK, Wright KW. Embryology. In: Wright KW, Spiegel PH, Thompson LS, editors. Handbook of pediatric neuro-ophthalmology. New York: Springer; 2006. p. 1–61. Cook CS, Sulik KK, Wright KW. Embryology. In: Wright KW, Spiegel PH, Thompson LS, editors. Handbook of pediatric neuro-ophthalmology. New York: Springer; 2006. p. 1–61.
4.
go back to reference Donkelaar HJ. Mechanisms of Development. In: Donkelaar HJ, Lammens M, Hori A, editors. Clinical neuroembryology: development and developmental disorders of the human central nervous system. Berlin: Springer; 2006. p. 47–95.CrossRef Donkelaar HJ. Mechanisms of Development. In: Donkelaar HJ, Lammens M, Hori A, editors. Clinical neuroembryology: development and developmental disorders of the human central nervous system. Berlin: Springer; 2006. p. 47–95.CrossRef
5.
go back to reference Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev. 2018;154:122–44.CrossRef Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev. 2018;154:122–44.CrossRef
6.
go back to reference Ghanavatinejad F, Fard Tabrizi ZP, Omidghaemi S, Sharifi E, Moller SG, Jami MS. Protein biomarkers of neural system. J Otol. 2019;14(3):77–88.CrossRef Ghanavatinejad F, Fard Tabrizi ZP, Omidghaemi S, Sharifi E, Moller SG, Jami MS. Protein biomarkers of neural system. J Otol. 2019;14(3):77–88.CrossRef
7.
go back to reference Donkelaar HJ, Yamada S, Shiota K, van der Vliet T. Overview of the development of the human brain and spinal cord. In: Donkelaar HJ, Lammens M, Hori A, editors. Clinical neuroembryology: development and developmental disorders of the human central nervous system. Berlin: Springer; 2014. p. 1–52. Donkelaar HJ, Yamada S, Shiota K, van der Vliet T. Overview of the development of the human brain and spinal cord. In: Donkelaar HJ, Lammens M, Hori A, editors. Clinical neuroembryology: development and developmental disorders of the human central nervous system. Berlin: Springer; 2014. p. 1–52.
8.
go back to reference Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci. 2016;73(5):923–47.CrossRef Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci. 2016;73(5):923–47.CrossRef
9.
go back to reference Tseng W-C, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. In: Pelegri F, Danilchik M, Sutherland A, editors. Vertebrate Development: Maternal to Zygotic Control. Cham: Springer International Publishing; 2017. p. 307–81.CrossRef Tseng W-C, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. In: Pelegri F, Danilchik M, Sutherland A, editors. Vertebrate Development: Maternal to Zygotic Control. Cham: Springer International Publishing; 2017. p. 307–81.CrossRef
10.
go back to reference Kim PT, Ong CJ. Differentiation of definitive endoderm from mouse embryonic stem cells. Results Probl Cell Differ. 2012;55:303–19.CrossRef Kim PT, Ong CJ. Differentiation of definitive endoderm from mouse embryonic stem cells. Results Probl Cell Differ. 2012;55:303–19.CrossRef
11.
go back to reference Fukuda K, Kikuchi Y. Endoderm development in vertebrates: fate mapping, induction and regional specification. Dev Growth Differ. 2005;47(6):343–55.CrossRef Fukuda K, Kikuchi Y. Endoderm development in vertebrates: fate mapping, induction and regional specification. Dev Growth Differ. 2005;47(6):343–55.CrossRef
12.
go back to reference Lombardi J. Embryogenesis. In: Lombardi J, editor. Comparative vertebrate reproduction. Boston: Springer; 1998. p. 225–51.CrossRef Lombardi J. Embryogenesis. In: Lombardi J, editor. Comparative vertebrate reproduction. Boston: Springer; 1998. p. 225–51.CrossRef
13.
go back to reference Flickinger R. AT-rich repetitive DNA sequences, transcription frequency and germ layer determination. Mech Dev. 2015;138(Pt 3):227–32.CrossRef Flickinger R. AT-rich repetitive DNA sequences, transcription frequency and germ layer determination. Mech Dev. 2015;138(Pt 3):227–32.CrossRef
14.
go back to reference Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol. 2013;45(4):885–98.CrossRef Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol. 2013;45(4):885–98.CrossRef
15.
go back to reference Fonar Y, Frank D. FAK and WNT signaling: the meeting of two pathways in cancer and development. Anticancer Agents Med Chem. 2011;11(7):600–6.CrossRef Fonar Y, Frank D. FAK and WNT signaling: the meeting of two pathways in cancer and development. Anticancer Agents Med Chem. 2011;11(7):600–6.CrossRef
16.
go back to reference Spadafora C. A LINE-1-encoded reverse transcriptase-dependent regulatory mechanism is active in embryogenesis and tumorigenesis. Ann N Y Acad Sci. 2015;1341:164–71.CrossRef Spadafora C. A LINE-1-encoded reverse transcriptase-dependent regulatory mechanism is active in embryogenesis and tumorigenesis. Ann N Y Acad Sci. 2015;1341:164–71.CrossRef
17.
go back to reference Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1a):A68–77.PubMedPubMedCentral Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1a):A68–77.PubMedPubMedCentral
18.
go back to reference Deng M, Bragelmann J, Schultze JL, Perner S. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinform. 2016;17:72.CrossRef Deng M, Bragelmann J, Schultze JL, Perner S. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinform. 2016;17:72.CrossRef
19.
go back to reference Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–660.CrossRef Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–660.CrossRef
20.
go back to reference Paccola Mesquita FC, Hochman-Mendez C, Morrissey J, Sampaio LC, Taylor DA. Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System. Stem Cells Int. 2019;2019:9704945.CrossRef Paccola Mesquita FC, Hochman-Mendez C, Morrissey J, Sampaio LC, Taylor DA. Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System. Stem Cells Int. 2019;2019:9704945.CrossRef
21.
go back to reference Zhang D, Wu X, Liu X, Cai C, Zeng G, Rohozinski J, et al. Piwil2-transfected human fibroblasts are cancer stem cell-like and genetically unstable. Oncotarget. 2017;8(7):12259–71.CrossRef Zhang D, Wu X, Liu X, Cai C, Zeng G, Rohozinski J, et al. Piwil2-transfected human fibroblasts are cancer stem cell-like and genetically unstable. Oncotarget. 2017;8(7):12259–71.CrossRef
22.
go back to reference Guo NN, Liu LP, Zhang YX, Cai YT, Guo Y, Zheng YW, et al. Early prediction of the differentiation potential during the formation of human iPSC-derived embryoid bodies. Biochem Biophys Res Commun. 2019;516(3):673–9.CrossRef Guo NN, Liu LP, Zhang YX, Cai YT, Guo Y, Zheng YW, et al. Early prediction of the differentiation potential during the formation of human iPSC-derived embryoid bodies. Biochem Biophys Res Commun. 2019;516(3):673–9.CrossRef
23.
go back to reference Liu H, Zhang S, Zhao L, Zhang Y, Li Q, Chai X, et al. Resveratrol Enhances Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells through Inhibiting Canonical WNT Signal Pathway and Enhancing Serum Response Factor-miR-1 Axis. Stem Cells Int. 2016;2016:2524092.PubMed Liu H, Zhang S, Zhao L, Zhang Y, Li Q, Chai X, et al. Resveratrol Enhances Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells through Inhibiting Canonical WNT Signal Pathway and Enhancing Serum Response Factor-miR-1 Axis. Stem Cells Int. 2016;2016:2524092.PubMed
24.
go back to reference Diomede F, Zini N, Pizzicannella J, Merciaro I, Pizzicannella G, D’Orazio M, et al. 5-Aza Exposure Improves Reprogramming Process Through Embryoid Body Formation in Human Gingival Stem Cells. Front Genet. 2018;9:419.CrossRef Diomede F, Zini N, Pizzicannella J, Merciaro I, Pizzicannella G, D’Orazio M, et al. 5-Aza Exposure Improves Reprogramming Process Through Embryoid Body Formation in Human Gingival Stem Cells. Front Genet. 2018;9:419.CrossRef
25.
go back to reference Fang F, Li Z, Zhao Q, Xiong C, Ni K. Analysis of multi-lineage gene expression dynamics during primordial germ cell induction from human induced pluripotent stem cells. Stem Cell Res Ther. 2020;11(1):100.CrossRef Fang F, Li Z, Zhao Q, Xiong C, Ni K. Analysis of multi-lineage gene expression dynamics during primordial germ cell induction from human induced pluripotent stem cells. Stem Cell Res Ther. 2020;11(1):100.CrossRef
26.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):1.CrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):1.CrossRef
27.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.CrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.CrossRef
28.
go back to reference Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front Genet. 2019;10:711.CrossRef Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front Genet. 2019;10:711.CrossRef
29.
go back to reference Pucéat M. TGFbeta in the differentiation of embryonic stem cells. Cardiovasc Res. 2007;74(2):256–61.CrossRef Pucéat M. TGFbeta in the differentiation of embryonic stem cells. Cardiovasc Res. 2007;74(2):256–61.CrossRef
30.
go back to reference Takemoto T. Mechanism of cell fate choice between neural and mesodermal development during early embryogenesis. Congenit Anom (Kyoto). 2013;53(2):61–6.CrossRef Takemoto T. Mechanism of cell fate choice between neural and mesodermal development during early embryogenesis. Congenit Anom (Kyoto). 2013;53(2):61–6.CrossRef
31.
go back to reference Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.CrossRef Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.CrossRef
32.
go back to reference Williams ML, Bhatia SK. Engineering the extracellular matrix for clinical applications: endoderm, mesoderm, and ectoderm. Biotechnol J. 2014;9(3):337–47.CrossRef Williams ML, Bhatia SK. Engineering the extracellular matrix for clinical applications: endoderm, mesoderm, and ectoderm. Biotechnol J. 2014;9(3):337–47.CrossRef
Metadata
Title
Differential genetic mutations of ectoderm, mesoderm, and endoderm-derived tumors in TCGA database
Authors
Xingjie Gao
Xiaoteng Cui
Xinxin Zhang
Chunyan Zhao
Nan Zhang
Yan Zhao
Yuanyuan Ren
Chao Su
Lin Ge
Shaoyuan Wu
Jie Yang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01678-x

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine