Skip to main content
Top
Published in: Chinese Medicine 1/2018

Open Access 01-12-2018 | Research

Different modulation of Panax notoginseng on the absorption profiling of triptolide and tripterine from Tripterygium wilfordii in rat intestine

Authors: Yiqun Li, Huiting Cao, Mengzhu Liu, Benyong Zhang, Xinlong Zhang, Donglei Shi, Liwei Guo, Jinao Duan, Xueping Zhou, Huaxu Zhu, Qichun Zhang

Published in: Chinese Medicine | Issue 1/2018

Login to get access

Abstract

Background

Compatibility with Panax notoginseng (PN) reduced the plasma concentration of triptolide and delayed the Tmax of Tripterygium wilfordii (TW), the sovereign medicine of Qing-Luo Tong-Bi decoction, which hinted the absorption process of triptolide might be involved in decreasing the toxicity in liver and kidney.

Methods

The absorption of triptolide, triptonide, wilforlide and tripterine from monomer, TW, TW-PN, TW-Caulis Sinomenii (TW-CS) and Qing-Luo Tong-Bi were analyzed in duodenum, jejunum, ileum and colon of rat via single-pass intestinal perfusion model. An UPLC-MS/MS analysis method was developed to determine the concentration of triptolide, triptonide, wilforlide and tripterine in the inlet and outlet. Then Peff, 10 cm%ABS and Ka were calculated based on the perfusate flux, perfusate volume and candidate chemicals concentration.

Results

The absorption of triptolide, triptonide, wilforlide and tripterine in duodenum, jejunum, ileum and colon was independent of concentration within range of 3–9 μg/mL. The target compounds, triptolide, triptonide, wilforlide and tripterine from the TW extract, showed higher absorption extent and rate than those administrated alone, and compared with the absorption situation of the chemicals of TW extract, the absorption of triptolide, triptonide and wilforlide of the extract of TW-PN, TW-CS and Qing-Luo Tong-Bi were decreased in these intestinal segments. However, PN-promoted tripterine absorption was observed in the intestine.

Conclusions

Modulation of absorption of chemicals in TW by subsidiary herbs may be responsible for reinforcing the actions and neutralizing the adverse effects through compatibility in the formula of Qing-Luo Tong-Bi. PN inhibits the absorption of triptolide of TW and promote the absorption of tripterine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li Y, Wang J, Xiao Y, et al. A systems pharmacology approach to investigate the mechanisms of action of Semen Strychni and Tripterygium wilfordii Hook F for treatment of rheumatoid arthritis. J Ethnopharmacol. 2015;175:301–14.CrossRefPubMed Li Y, Wang J, Xiao Y, et al. A systems pharmacology approach to investigate the mechanisms of action of Semen Strychni and Tripterygium wilfordii Hook F for treatment of rheumatoid arthritis. J Ethnopharmacol. 2015;175:301–14.CrossRefPubMed
2.
go back to reference Zhang Y, Xu W, Li H, et al. Therapeutic effects of total alkaloids of Tripterygium wilfordii Hook f. on collagen-induced arthritis in rats. J Ethnopharmacol. 2013;145:699–705.CrossRefPubMed Zhang Y, Xu W, Li H, et al. Therapeutic effects of total alkaloids of Tripterygium wilfordii Hook f. on collagen-induced arthritis in rats. J Ethnopharmacol. 2013;145:699–705.CrossRefPubMed
4.
go back to reference Ma J, Dey M, Yang H, et al. Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry. 2007;68:1172–8.CrossRefPubMed Ma J, Dey M, Yang H, et al. Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry. 2007;68:1172–8.CrossRefPubMed
5.
go back to reference Li XX, Du FY, Liu HX, et al. Investigation of the active components in Tripterygium wilfordii leading to its acute hepatotoxicity and nephrotoxicity. J Ethnopharmacol. 2015;162:238–43.CrossRefPubMed Li XX, Du FY, Liu HX, et al. Investigation of the active components in Tripterygium wilfordii leading to its acute hepatotoxicity and nephrotoxicity. J Ethnopharmacol. 2015;162:238–43.CrossRefPubMed
6.
go back to reference Zhang B, Zhang Q, Liu M, et al. Increased involvement of Panax notoginseng in the mechanism of decreased hepatotoxicity induced by Tripterygium wilfordii in rats. J Ethnopharmacol. 2016;185:243–54.CrossRefPubMed Zhang B, Zhang Q, Liu M, et al. Increased involvement of Panax notoginseng in the mechanism of decreased hepatotoxicity induced by Tripterygium wilfordii in rats. J Ethnopharmacol. 2016;185:243–54.CrossRefPubMed
7.
go back to reference Liang XL, Liao ZG, Zhu JY, et al. The absorption characterization effects and mechanism of Radix Angelicae dahuricae extracts on baicalin in Radix Scutellariae using in vivo and in vitro absorption models. J Ethnopharmacol. 2012;139:52–7.CrossRefPubMed Liang XL, Liao ZG, Zhu JY, et al. The absorption characterization effects and mechanism of Radix Angelicae dahuricae extracts on baicalin in Radix Scutellariae using in vivo and in vitro absorption models. J Ethnopharmacol. 2012;139:52–7.CrossRefPubMed
8.
go back to reference Fagerholm U, Lindahl A, Lennernas H. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J Pharm Pharmacol. 1997;49:687–90.CrossRefPubMed Fagerholm U, Lindahl A, Lennernas H. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J Pharm Pharmacol. 1997;49:687–90.CrossRefPubMed
9.
go back to reference Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13:1336–42.CrossRefPubMed Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13:1336–42.CrossRefPubMed
10.
go back to reference Salphati L, Childers K, Pan L, et al. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol. 2001;53:1007–13.CrossRefPubMed Salphati L, Childers K, Pan L, et al. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol. 2001;53:1007–13.CrossRefPubMed
11.
go back to reference Nie SF, Pan WS, Yang XG, et al. Evaluation of gravimetry in the rat single-pass intestinal perfusion technique. Chin J New Drugs. 2005;14:1176–9. Nie SF, Pan WS, Yang XG, et al. Evaluation of gravimetry in the rat single-pass intestinal perfusion technique. Chin J New Drugs. 2005;14:1176–9.
12.
go back to reference Huang SH, Long XY, Yuan F, et al. Transport of puerarin in rat intestine in situ by modified gravimetry and phenol red assay. J Guangdong Pharm Univ. 2012;28:603–7. Huang SH, Long XY, Yuan F, et al. Transport of puerarin in rat intestine in situ by modified gravimetry and phenol red assay. J Guangdong Pharm Univ. 2012;28:603–7.
13.
go back to reference Varma MV, Obach RS, Rotter C, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53:1098–108.CrossRefPubMed Varma MV, Obach RS, Rotter C, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53:1098–108.CrossRefPubMed
14.
go back to reference Sugano K, Terada K. Rate- and extent-limiting factors of oral drug absorption: theory and applications. J Pharm Sci. 2015;104:2777–88.CrossRefPubMed Sugano K, Terada K. Rate- and extent-limiting factors of oral drug absorption: theory and applications. J Pharm Sci. 2015;104:2777–88.CrossRefPubMed
15.
go back to reference Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.CrossRefPubMed Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.CrossRefPubMed
16.
go back to reference Oshima T, Miwa H. Gastrointestinal mucosal barrier function and diseases. J Gastroenterol. 2016;51:768–78.CrossRefPubMed Oshima T, Miwa H. Gastrointestinal mucosal barrier function and diseases. J Gastroenterol. 2016;51:768–78.CrossRefPubMed
17.
go back to reference Anzai K, Fukagawa K, Iwakiri R, et al. Increased lipid absorption and transport in the small intestine of zucker obese rats. J Clin Biochem Nutr. 2009;45:82–5.CrossRefPubMedPubMedCentral Anzai K, Fukagawa K, Iwakiri R, et al. Increased lipid absorption and transport in the small intestine of zucker obese rats. J Clin Biochem Nutr. 2009;45:82–5.CrossRefPubMedPubMedCentral
18.
go back to reference Terato K, Hiramatsu Y, Yoshino Y. Studies on iron absorption. II. Transport mechanism of low molecular iron chelate in rat intestine. Am J Dig Dis. 1973;18:129–34.CrossRefPubMed Terato K, Hiramatsu Y, Yoshino Y. Studies on iron absorption. II. Transport mechanism of low molecular iron chelate in rat intestine. Am J Dig Dis. 1973;18:129–34.CrossRefPubMed
19.
go back to reference Mahmud F, Jeon OC, Al-Hilal TA, et al. Absorption mechanism of a physical complex of monomeric insulin and deoxycholyl-l-lysyl-methylester in the small intestine. Mol Pharm. 2015;12:1911–20.CrossRefPubMed Mahmud F, Jeon OC, Al-Hilal TA, et al. Absorption mechanism of a physical complex of monomeric insulin and deoxycholyl-l-lysyl-methylester in the small intestine. Mol Pharm. 2015;12:1911–20.CrossRefPubMed
20.
go back to reference Zhai L, Shi J, Xu W, et al. Ex vivo and in situ evaluation of ‘dispelling-wind’ Chinese medicine herb–drugs on intestinal absorption of chlorogenic acid. Phytother Res. 2015;29:1974–81.CrossRefPubMed Zhai L, Shi J, Xu W, et al. Ex vivo and in situ evaluation of ‘dispelling-wind’ Chinese medicine herb–drugs on intestinal absorption of chlorogenic acid. Phytother Res. 2015;29:1974–81.CrossRefPubMed
21.
go back to reference Dahan A, Amidon GL. MRP2 mediated drug–drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting. Int J Pharm. 2010;386:216–20.CrossRefPubMed Dahan A, Amidon GL. MRP2 mediated drug–drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting. Int J Pharm. 2010;386:216–20.CrossRefPubMed
22.
go back to reference Hackam DJ. Guts, germs and glucose: understanding the effects of prematurity on the interaction between bacteria and nutrient absorption across the intestine. Br J Nutr. 2012;108:571–3.CrossRefPubMed Hackam DJ. Guts, germs and glucose: understanding the effects of prematurity on the interaction between bacteria and nutrient absorption across the intestine. Br J Nutr. 2012;108:571–3.CrossRefPubMed
23.
go back to reference Martinez-Montano E, Pena E, Viana MT. Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro lysine–arginine interaction using the everted intestine system. Fish Physiol Biochem. 2013;39:325–34.CrossRefPubMed Martinez-Montano E, Pena E, Viana MT. Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro lysine–arginine interaction using the everted intestine system. Fish Physiol Biochem. 2013;39:325–34.CrossRefPubMed
24.
go back to reference Hassan IA, Elzubeir EA, El Tinay AH. Growth and apparent absorption of minerals in broiler chicks fed diets with low or high tannin contents. Trop Anim Health Prod. 2003;35:189–96.CrossRefPubMed Hassan IA, Elzubeir EA, El Tinay AH. Growth and apparent absorption of minerals in broiler chicks fed diets with low or high tannin contents. Trop Anim Health Prod. 2003;35:189–96.CrossRefPubMed
25.
go back to reference Mao X, Wu LF, Zhao HJ, et al. Transport of corilagin, gallic acid, and ellagic acid from Fructus phyllanthi tannin fraction in Caco-2 cell monolayers. Evid Based Complement Altern Med. 2016;2016:9205379. Mao X, Wu LF, Zhao HJ, et al. Transport of corilagin, gallic acid, and ellagic acid from Fructus phyllanthi tannin fraction in Caco-2 cell monolayers. Evid Based Complement Altern Med. 2016;2016:9205379.
26.
go back to reference Jamroz D, Wiliczkiewicz A, Skorupinska J, et al. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. Br Poult Sci. 2009;50:687–99.CrossRefPubMed Jamroz D, Wiliczkiewicz A, Skorupinska J, et al. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. Br Poult Sci. 2009;50:687–99.CrossRefPubMed
27.
go back to reference He X, Deng FJ, Ge JW, et al. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res. 2015;10:1450–6.CrossRefPubMedPubMedCentral He X, Deng FJ, Ge JW, et al. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res. 2015;10:1450–6.CrossRefPubMedPubMedCentral
28.
go back to reference Kim SW, Kwon HY, Chi DW, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochem Pharmacol. 2003;65:75–82.CrossRefPubMed Kim SW, Kwon HY, Chi DW, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochem Pharmacol. 2003;65:75–82.CrossRefPubMed
29.
go back to reference Drescher S, Glaeser H, Murdter T, et al. P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin Pharmacol Ther. 2003;73:223–31.CrossRefPubMed Drescher S, Glaeser H, Murdter T, et al. P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin Pharmacol Ther. 2003;73:223–31.CrossRefPubMed
30.
go back to reference Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol. 2008;4:923–39.CrossRefPubMed Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol. 2008;4:923–39.CrossRefPubMed
31.
go back to reference Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 1995;13:129–34.CrossRefPubMed Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 1995;13:129–34.CrossRefPubMed
32.
go back to reference Kuze J, Mutoh T, Takenaka T, et al. Evaluation of animal models for intestinal first-pass metabolism of drug candidates to be metabolized by CYP3A enzymes via in vivo and in vitro oxidation of midazolam and triazolam. Xenobiotica. 2013;43:598–606.CrossRefPubMed Kuze J, Mutoh T, Takenaka T, et al. Evaluation of animal models for intestinal first-pass metabolism of drug candidates to be metabolized by CYP3A enzymes via in vivo and in vitro oxidation of midazolam and triazolam. Xenobiotica. 2013;43:598–606.CrossRefPubMed
33.
go back to reference Schurgers N, Bijdendijk J, Tukker JJ, et al. Comparison of four experimental techniques for studying drug absorption kinetics in the anesthetized rat in situ. J Pharm Sci. 1986;75:117–9.CrossRefPubMed Schurgers N, Bijdendijk J, Tukker JJ, et al. Comparison of four experimental techniques for studying drug absorption kinetics in the anesthetized rat in situ. J Pharm Sci. 1986;75:117–9.CrossRefPubMed
34.
go back to reference Takara K, Ohnishi N, Horibe S, et al. Expression profiles of drug-metabolizing enzyme CYP3A and drug efflux transporter multidrug resistance 1 subfamily mRNAS in small intestine. Drug Metab Dispos. 2003;31:1235–9.CrossRefPubMed Takara K, Ohnishi N, Horibe S, et al. Expression profiles of drug-metabolizing enzyme CYP3A and drug efflux transporter multidrug resistance 1 subfamily mRNAS in small intestine. Drug Metab Dispos. 2003;31:1235–9.CrossRefPubMed
35.
go back to reference Van Peer E, Verbueken E, Saad M, et al. Ontogeny of CYP3A and P-glycoprotein in the liver and the small intestine of the Gottingen minipig: an immunohistochemical evaluation. Basic Clin Pharmacol Toxicol. 2014;114:387–94.CrossRefPubMed Van Peer E, Verbueken E, Saad M, et al. Ontogeny of CYP3A and P-glycoprotein in the liver and the small intestine of the Gottingen minipig: an immunohistochemical evaluation. Basic Clin Pharmacol Toxicol. 2014;114:387–94.CrossRefPubMed
36.
go back to reference Singhal D, Ho NF, Anderson BD. Absorption and intestinal metabolism of purine dideoxynucleosides and an adenosine deaminase-activated prodrug of 2′,3′-dideoxyinosine in the mesenteric vein cannulated rat ileum. J Pharm Sci. 1998;87:569–77.CrossRefPubMed Singhal D, Ho NF, Anderson BD. Absorption and intestinal metabolism of purine dideoxynucleosides and an adenosine deaminase-activated prodrug of 2′,3′-dideoxyinosine in the mesenteric vein cannulated rat ileum. J Pharm Sci. 1998;87:569–77.CrossRefPubMed
Metadata
Title
Different modulation of Panax notoginseng on the absorption profiling of triptolide and tripterine from Tripterygium wilfordii in rat intestine
Authors
Yiqun Li
Huiting Cao
Mengzhu Liu
Benyong Zhang
Xinlong Zhang
Donglei Shi
Liwei Guo
Jinao Duan
Xueping Zhou
Huaxu Zhu
Qichun Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2018
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-017-0157-6

Other articles of this Issue 1/2018

Chinese Medicine 1/2018 Go to the issue