Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2012

Open Access 01-12-2012 | Research article

Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study

Authors: Hans-Peter W van Jonbergen, Bernardo Innocenti, Gian Luca Gervasi, Luc Labey, Nico Verdonschot

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2012

Login to get access

Abstract

Background

Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis.

Methods

We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion.

Results

During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design.

Conclusions

Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding.
Appendix
Available only for authorised users
Literature
1.
go back to reference van Jonbergen HPW, Poolman RW, van Kampen A: Isolated patellofemoral osteoarthritis: a systematic review of treatment options using the GRADE approach. Acta Orthop. 2010, 81: 199-205. 10.3109/17453671003628756.PubMedCentralCrossRefPubMed van Jonbergen HPW, Poolman RW, van Kampen A: Isolated patellofemoral osteoarthritis: a systematic review of treatment options using the GRADE approach. Acta Orthop. 2010, 81: 199-205. 10.3109/17453671003628756.PubMedCentralCrossRefPubMed
2.
go back to reference Gupta RR, Zywiel MG, Leadbetter WB, Bonutti P, Mont MA: Scientific evidence for the use of modern patellofemoral arthroplasty. Expert Rev Med Devices. 2010, 7: 51-66. 10.1586/erd.09.53.CrossRefPubMed Gupta RR, Zywiel MG, Leadbetter WB, Bonutti P, Mont MA: Scientific evidence for the use of modern patellofemoral arthroplasty. Expert Rev Med Devices. 2010, 7: 51-66. 10.1586/erd.09.53.CrossRefPubMed
3.
go back to reference van Jonbergen HPW, Werkman DM, Barnaart LF, van Kampen A: Long-term outcomes of patellofemoral arthroplasty. J Arthroplasty. 2010, 25: 1066-1071. 10.1016/j.arth.2009.08.023.CrossRefPubMed van Jonbergen HPW, Werkman DM, Barnaart LF, van Kampen A: Long-term outcomes of patellofemoral arthroplasty. J Arthroplasty. 2010, 25: 1066-1071. 10.1016/j.arth.2009.08.023.CrossRefPubMed
4.
go back to reference Tissakht M, Ahmed AM, Chan KC: Calculated stress-shielding in the distal femur after total knee replacement corresponds to the reported location of bone loss. J Orthop Res. 1996, 14: 778-785. 10.1002/jor.1100140515.CrossRefPubMed Tissakht M, Ahmed AM, Chan KC: Calculated stress-shielding in the distal femur after total knee replacement corresponds to the reported location of bone loss. J Orthop Res. 1996, 14: 778-785. 10.1002/jor.1100140515.CrossRefPubMed
5.
go back to reference van Lenthe GH, de Waal Malefijt MC, Huiskes R: Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br. 1997, 79: 117-122. 10.1302/0301-620X.79B1.6808.CrossRefPubMed van Lenthe GH, de Waal Malefijt MC, Huiskes R: Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br. 1997, 79: 117-122. 10.1302/0301-620X.79B1.6808.CrossRefPubMed
6.
go back to reference van Jonbergen HPW, Koster K, Labey L, Innocenti B, van Kampen A: Distal femoral bone mineral density decreases following patellofemoral arthroplasty: 1-year follow-up study of 14 patients. BMC Musculoskelet Disord. 2010, 11: 74-10.1186/1471-2474-11-74.PubMedCentralCrossRefPubMed van Jonbergen HPW, Koster K, Labey L, Innocenti B, van Kampen A: Distal femoral bone mineral density decreases following patellofemoral arthroplasty: 1-year follow-up study of 14 patients. BMC Musculoskelet Disord. 2010, 11: 74-10.1186/1471-2474-11-74.PubMedCentralCrossRefPubMed
7.
go back to reference Qian JG, Song YW, Tang X, Zhang S: Examination of femoral-neck structure using finite element model and bone mineral density using dual-energy X-ray absorptiometry. Clin Biomech. 2009, 24: 47-52. 10.1016/j.clinbiomech.2008.09.007.CrossRef Qian JG, Song YW, Tang X, Zhang S: Examination of femoral-neck structure using finite element model and bone mineral density using dual-energy X-ray absorptiometry. Clin Biomech. 2009, 24: 47-52. 10.1016/j.clinbiomech.2008.09.007.CrossRef
8.
go back to reference Zelle J, Van der Zanden AC, De Waal MM, Verdonschot N: Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Clin Biomech. 2009, 24: 842-849. 10.1016/j.clinbiomech.2009.08.004.CrossRef Zelle J, Van der Zanden AC, De Waal MM, Verdonschot N: Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Clin Biomech. 2009, 24: 842-849. 10.1016/j.clinbiomech.2009.08.004.CrossRef
9.
go back to reference Najarian S, Rostami M, Rezaei T: Biomechanical analysis of patellofemoral joint prosthesis using finite element method. Proceedings of the Second IASTED International Conference on BioMechanics: 7-9 September 2005; Benidorm, Spain. Edited by: Hamza MH. 2005, ACTA Press, Calgary, 265-268. Najarian S, Rostami M, Rezaei T: Biomechanical analysis of patellofemoral joint prosthesis using finite element method. Proceedings of the Second IASTED International Conference on BioMechanics: 7-9 September 2005; Benidorm, Spain. Edited by: Hamza MH. 2005, ACTA Press, Calgary, 265-268.
10.
go back to reference Morra EA, Greenwald AS: Patellofemoral replacement polymer stress during daily activities: a finite element study. J Bone Joint Surg Am. 2006, 88 (Suppl. 4): 213-216.CrossRefPubMed Morra EA, Greenwald AS: Patellofemoral replacement polymer stress during daily activities: a finite element study. J Bone Joint Surg Am. 2006, 88 (Suppl. 4): 213-216.CrossRefPubMed
11.
go back to reference Heegaard JH, Leyvraz PF, Hovey CB: A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment. Clin Biomech. 2001, 16: 415-423. 10.1016/S0268-0033(01)00020-1.CrossRef Heegaard JH, Leyvraz PF, Hovey CB: A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment. Clin Biomech. 2001, 16: 415-423. 10.1016/S0268-0033(01)00020-1.CrossRef
12.
go back to reference Beillas P, Papaioannou G, Tashman S, Yang KH: A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J Biomech. 2004, 37: 1019-1030. 10.1016/j.jbiomech.2003.11.022.CrossRefPubMed Beillas P, Papaioannou G, Tashman S, Yang KH: A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J Biomech. 2004, 37: 1019-1030. 10.1016/j.jbiomech.2003.11.022.CrossRefPubMed
13.
go back to reference Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE: Determination of orthotropic bone elastic constants using FEA and modal analysis. J Biomech. 2002, 35: 767-773. 10.1016/S0021-9290(02)00022-2.CrossRefPubMed Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE: Determination of orthotropic bone elastic constants using FEA and modal analysis. J Biomech. 2002, 35: 767-773. 10.1016/S0021-9290(02)00022-2.CrossRefPubMed
14.
go back to reference Iranpour F, Merican AM, Amis AA, Cobb JP: The width:thickness ratio of the patella: an aid in knee arthroplasty. Clin Orthop. 2008, 466: 1198-1203. 10.1007/s11999-008-0130-x.PubMedCentralCrossRefPubMed Iranpour F, Merican AM, Amis AA, Cobb JP: The width:thickness ratio of the patella: an aid in knee arthroplasty. Clin Orthop. 2008, 466: 1198-1203. 10.1007/s11999-008-0130-x.PubMedCentralCrossRefPubMed
15.
go back to reference Pena E, Calvo B, Martinez MA, Doblare M: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006, 39: 1686-1701. 10.1016/j.jbiomech.2005.04.030.CrossRefPubMed Pena E, Calvo B, Martinez MA, Doblare M: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006, 39: 1686-1701. 10.1016/j.jbiomech.2005.04.030.CrossRefPubMed
16.
go back to reference Pena E, Calvo B, Martinez MA, Palanca D, Doblare M: Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech. 2005, 20: 498-507. 10.1016/j.clinbiomech.2005.01.009.CrossRef Pena E, Calvo B, Martinez MA, Palanca D, Doblare M: Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech. 2005, 20: 498-507. 10.1016/j.clinbiomech.2005.01.009.CrossRef
17.
go back to reference Besier TF, Gold GE, Beaupre GS, Delp SL: A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc. 2005, 37: 1924-1930. 10.1249/01.mss.0000176686.18683.64.CrossRefPubMed Besier TF, Gold GE, Beaupre GS, Delp SL: A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc. 2005, 37: 1924-1930. 10.1249/01.mss.0000176686.18683.64.CrossRefPubMed
18.
go back to reference Weiss JA, Gardiner JC: Computational modeling of ligament mechanics. Crit Rev Biomed Eng. 2001, 29: 303-371. 10.1615/CritRevBiomedEng.v29.i3.20.CrossRefPubMed Weiss JA, Gardiner JC: Computational modeling of ligament mechanics. Crit Rev Biomed Eng. 2001, 29: 303-371. 10.1615/CritRevBiomedEng.v29.i3.20.CrossRefPubMed
19.
go back to reference Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J: Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study. J Orthop Surg Res. 2009, 4: 26-10.1186/1749-799X-4-26.PubMedCentralCrossRefPubMed Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J: Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study. J Orthop Surg Res. 2009, 4: 26-10.1186/1749-799X-4-26.PubMedCentralCrossRefPubMed
20.
go back to reference Victor J, Van Glabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J: An experimental model for kinematic analysis of the knee. J Bone Joint Surg Am. 2009, 91 (Suppl. 6): 150-163.CrossRefPubMed Victor J, Van Glabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J: An experimental model for kinematic analysis of the knee. J Bone Joint Surg Am. 2009, 91 (Suppl. 6): 150-163.CrossRefPubMed
21.
go back to reference Victor J, Labey L, Wong P, Innocenti B, Bellemans J: The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res. 2010, 28: 419-428.PubMed Victor J, Labey L, Wong P, Innocenti B, Bellemans J: The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res. 2010, 28: 419-428.PubMed
22.
go back to reference Sharma A, Leszko F, Komistek RD, Scuderi GR, Cates HE, Liu F: In vivo patellofemoral forces in high flexion total knee arthroplasty. J Biomech. 2008, 41: 642-648. 10.1016/j.jbiomech.2007.09.027.CrossRefPubMed Sharma A, Leszko F, Komistek RD, Scuderi GR, Cates HE, Liu F: In vivo patellofemoral forces in high flexion total knee arthroplasty. J Biomech. 2008, 41: 642-648. 10.1016/j.jbiomech.2007.09.027.CrossRefPubMed
23.
go back to reference Grood ES, Suntay WJ: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983, 105: 136-144. 10.1115/1.3138397.CrossRefPubMed Grood ES, Suntay WJ: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983, 105: 136-144. 10.1115/1.3138397.CrossRefPubMed
24.
go back to reference Wah Chang: Zirconium Products: Technical Data Sheet. 2003, An Allegheny Technologies Company Wah Chang: Zirconium Products: Technical Data Sheet. 2003, An Allegheny Technologies Company
25.
go back to reference Davis JR: Handbook of Materials for Medical Devices. 2003, Materials Park, Ohio: ASM International Davis JR: Handbook of Materials for Medical Devices. 2003, Materials Park, Ohio: ASM International
26.
go back to reference Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech. 2002, 35: 267-275. 10.1016/S0021-9290(01)00179-8.CrossRefPubMed Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech. 2002, 35: 267-275. 10.1016/S0021-9290(01)00179-8.CrossRefPubMed
27.
go back to reference Halloran JP, Petrella AJ, Rullkoetter PJ: Explicit finite element modeling of total knee replacement mechanics. J Biomech. 2005, 38: 323-331. 10.1016/j.jbiomech.2004.02.046.CrossRefPubMed Halloran JP, Petrella AJ, Rullkoetter PJ: Explicit finite element modeling of total knee replacement mechanics. J Biomech. 2005, 38: 323-331. 10.1016/j.jbiomech.2004.02.046.CrossRefPubMed
28.
go back to reference Vaninbroukx M, Labey L, Innocenti B, Bellemans J: Cementing the femoral component in total knee arthroplasty: which technique is the best?. Knee. 2009, 16: 265-268. 10.1016/j.knee.2008.11.015.CrossRefPubMed Vaninbroukx M, Labey L, Innocenti B, Bellemans J: Cementing the femoral component in total knee arthroplasty: which technique is the best?. Knee. 2009, 16: 265-268. 10.1016/j.knee.2008.11.015.CrossRefPubMed
29.
go back to reference Janssen D, Mann KA, Verdonschot N: Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response. J Biomech. 2008, 41: 3158-3163. 10.1016/j.jbiomech.2008.08.020.PubMedCentralCrossRefPubMed Janssen D, Mann KA, Verdonschot N: Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response. J Biomech. 2008, 41: 3158-3163. 10.1016/j.jbiomech.2008.08.020.PubMedCentralCrossRefPubMed
30.
go back to reference Poggie RA, Wert JJ, Mishra AK, Davidson JA: Friction and wear characteristics of UHMWPE in reciprocating sliding contact with Co-Cr, Ti-6A1-4V, and Zirconia implant bearing surfaces. Wear and Friction of Elastomers, ASTM STP 1145. Edited by: Denton R, Keshavan MK. 1992, Philadelphia: American Society for Testing and Materials, 65-81. Poggie RA, Wert JJ, Mishra AK, Davidson JA: Friction and wear characteristics of UHMWPE in reciprocating sliding contact with Co-Cr, Ti-6A1-4V, and Zirconia implant bearing surfaces. Wear and Friction of Elastomers, ASTM STP 1145. Edited by: Denton R, Keshavan MK. 1992, Philadelphia: American Society for Testing and Materials, 65-81.
31.
go back to reference Catani F, Innocenti B, Belvedere C, Labey L, Ensini A, Leardini A: The Mark Coventry Award: Articular contact estimation in TKA using in vivo kinematics and finite element analysis. Clin Orthop Relat Res. 2010, 468: 19-28. 10.1007/s11999-009-0941-4.PubMedCentralCrossRefPubMed Catani F, Innocenti B, Belvedere C, Labey L, Ensini A, Leardini A: The Mark Coventry Award: Articular contact estimation in TKA using in vivo kinematics and finite element analysis. Clin Orthop Relat Res. 2010, 468: 19-28. 10.1007/s11999-009-0941-4.PubMedCentralCrossRefPubMed
32.
go back to reference Wretenberg P, Feng Y, Arborelius UP: High- and low-bar squatting techniques during weight-training. Med Sci Sports Exerc. 1996, 28: 218-224. 10.1097/00005768-199602000-00010.CrossRefPubMed Wretenberg P, Feng Y, Arborelius UP: High- and low-bar squatting techniques during weight-training. Med Sci Sports Exerc. 1996, 28: 218-224. 10.1097/00005768-199602000-00010.CrossRefPubMed
33.
go back to reference Innocenti B, Pianigiani S, Labey L, Victor J, Bellemans J: Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J Biomech. 2011, 44: 1573-1581. 10.1016/j.jbiomech.2011.02.081.CrossRefPubMed Innocenti B, Pianigiani S, Labey L, Victor J, Bellemans J: Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J Biomech. 2011, 44: 1573-1581. 10.1016/j.jbiomech.2011.02.081.CrossRefPubMed
34.
go back to reference Abu-Rajab RB, Watson WS, Walker B, Roberts J, Gallacher SJ, Meek RM: Peri-prosthetic bone mineral density after total knee arthroplasty. Cemented versus cementless fixation. J Bone Joint Surg Br. 2006, 88: 606-613. 10.1302/0301-620X.88B5.16893.CrossRefPubMed Abu-Rajab RB, Watson WS, Walker B, Roberts J, Gallacher SJ, Meek RM: Peri-prosthetic bone mineral density after total knee arthroplasty. Cemented versus cementless fixation. J Bone Joint Surg Br. 2006, 88: 606-613. 10.1302/0301-620X.88B5.16893.CrossRefPubMed
35.
go back to reference Karbowski A, Schwitalle M, Eckardt A, Heine J: Periprosthetic bone remodelling after total knee arthroplasty: early assessment by dual energy X-ray absorptiometry. Arch Orthop Trauma Surg. 1999, 119: 324-326. 10.1007/s004020050419.CrossRefPubMed Karbowski A, Schwitalle M, Eckardt A, Heine J: Periprosthetic bone remodelling after total knee arthroplasty: early assessment by dual energy X-ray absorptiometry. Arch Orthop Trauma Surg. 1999, 119: 324-326. 10.1007/s004020050419.CrossRefPubMed
36.
go back to reference Liu TK, Yang RS, Chieng PU, Shee BW: Periprosthetic bone mineral density of the distal femur after total knee arthroplasty. Int Orthop. 1995, 19: 346-351.PubMed Liu TK, Yang RS, Chieng PU, Shee BW: Periprosthetic bone mineral density of the distal femur after total knee arthroplasty. Int Orthop. 1995, 19: 346-351.PubMed
37.
go back to reference Petersen MM, Olsen C, Lauritzen JB, Lund B: Changes in bone mineral density of the distal femur following uncemented total knee arthroplasty. J Arthroplasty. 1995, 10: 7-11.CrossRefPubMed Petersen MM, Olsen C, Lauritzen JB, Lund B: Changes in bone mineral density of the distal femur following uncemented total knee arthroplasty. J Arthroplasty. 1995, 10: 7-11.CrossRefPubMed
38.
go back to reference Soininvaara TA, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM, Kroger HP: Periprosthetic femoral bone loss after total knee arthroplasty: 1-year follow-up study of 69 patients. Knee. 2004, 11: 297-302. 10.1016/j.knee.2003.09.006.CrossRefPubMed Soininvaara TA, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM, Kroger HP: Periprosthetic femoral bone loss after total knee arthroplasty: 1-year follow-up study of 69 patients. Knee. 2004, 11: 297-302. 10.1016/j.knee.2003.09.006.CrossRefPubMed
39.
go back to reference Spittlehouse AJ, Getty CJ, Eastell R: Measurement of bone mineral density by dual-energy X-ray absorptiometry around an uncemented knee prosthesis. J Arthroplasty. 1999, 14: 957-963. 10.1016/S0883-5403(99)90010-4.CrossRefPubMed Spittlehouse AJ, Getty CJ, Eastell R: Measurement of bone mineral density by dual-energy X-ray absorptiometry around an uncemented knee prosthesis. J Arthroplasty. 1999, 14: 957-963. 10.1016/S0883-5403(99)90010-4.CrossRefPubMed
40.
go back to reference van Loon CJ, Oyen WJ, de Waal Malefijt MC, Verdonschot N: Distal femoral bone mineral density after total knee arthroplasty: a comparison with general bone mineral density. Arch Orthop Trauma Surg. 2001, 121: 282-285. 10.1007/s004020000232.CrossRefPubMed van Loon CJ, Oyen WJ, de Waal Malefijt MC, Verdonschot N: Distal femoral bone mineral density after total knee arthroplasty: a comparison with general bone mineral density. Arch Orthop Trauma Surg. 2001, 121: 282-285. 10.1007/s004020000232.CrossRefPubMed
41.
go back to reference Meireles S, Completo A, Antonio SJ, Flores P: Strain shielding in distal femur after patellofemoral arthroplasty under different activity conditions. J Biomech. 2010, 43: 477-484. 10.1016/j.jbiomech.2009.09.048.CrossRefPubMed Meireles S, Completo A, Antonio SJ, Flores P: Strain shielding in distal femur after patellofemoral arthroplasty under different activity conditions. J Biomech. 2010, 43: 477-484. 10.1016/j.jbiomech.2009.09.048.CrossRefPubMed
42.
go back to reference Viceconti M, Olsen S, Nolte LP, Burton K: Extracting clinically relevant data from finite element simulations. Clin Biomech. 2005, 20: 451-454. 10.1016/j.clinbiomech.2005.01.010.CrossRef Viceconti M, Olsen S, Nolte LP, Burton K: Extracting clinically relevant data from finite element simulations. Clin Biomech. 2005, 20: 451-454. 10.1016/j.clinbiomech.2005.01.010.CrossRef
43.
go back to reference Taylor WR, Heller MO, Bergmann G, Duda GN: Tibio-femoral loading during human gait and stair climbing. J Orthop Res. 2004, 22: 625-632. 10.1016/j.orthres.2003.09.003.CrossRefPubMed Taylor WR, Heller MO, Bergmann G, Duda GN: Tibio-femoral loading during human gait and stair climbing. J Orthop Res. 2004, 22: 625-632. 10.1016/j.orthres.2003.09.003.CrossRefPubMed
44.
go back to reference Zheng N, Fleisig GS, Escamilla RF, Barrentine SW: An analytical model of the knee for estimation of internal forces during exercise. J Biomech. 1998, 31: 963-967. 10.1016/S0021-9290(98)00056-6.CrossRefPubMed Zheng N, Fleisig GS, Escamilla RF, Barrentine SW: An analytical model of the knee for estimation of internal forces during exercise. J Biomech. 1998, 31: 963-967. 10.1016/S0021-9290(98)00056-6.CrossRefPubMed
45.
go back to reference Guevarra Y: Implants for surgery: Wear of total knee joint prostheses. 1999, London: International Organization for Standardization Guevarra Y: Implants for surgery: Wear of total knee joint prostheses. 1999, London: International Organization for Standardization
Metadata
Title
Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study
Authors
Hans-Peter W van Jonbergen
Bernardo Innocenti
Gian Luca Gervasi
Luc Labey
Nico Verdonschot
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2012
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/1749-799X-7-28

Other articles of this Issue 1/2012

Journal of Orthopaedic Surgery and Research 1/2012 Go to the issue