Skip to main content
Top
Published in: Japanese Journal of Ophthalmology 1/2015

01-01-2015 | Clinical Investigation

Difference in correspondence between visual field defect and inner macular layer thickness measured using three types of spectral-domain OCT instruments

Authors: Kaori Ueda, Akiyasu Kanamori, Azusa Akashi, Yuki Kawaka, Yuko Yamada, Makoto Nakamura

Published in: Japanese Journal of Ophthalmology | Issue 1/2015

Login to get access

Abstract

Purpose

To compare the relationship between visual field sensitivity (VFS) and macular parameters measured using three spectral-domain optical coherence tomography (SD-OCT) instruments and to determine a base level (=floor effect) for macular parameters.

Methods

We imaged 127 glaucomatous eyes (1 eye per subject) using three different OCT instruments, i.e., the Cirrus, RTVue and 3D OCT devices; 76 normal eyes were evaluated as controls using the same instruments. The thicknesses of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer+inner plexiform layer (GCL/IPL), and mRNFL+GCL/IPL (GCC) were analyzed. The VFS of the area analyzed by OCT was expressed in decibels and the 1/Lambert scale. For each parameter, the structure–function relationship and the base level were evaluated by regression analysis. The strength of the correlations between the instruments was compared by the bootstrapping method.

Results

All of the macular parameters evaluated exhibited statistically significant correlations with VFS. The average GCC measured by all three SD-OCT instruments and the average mRNFL thickness measured by the Cirrus and 3D OCT instruments had similar correlations with VFS. The average GCL/IPL thickness measured by the Cirrus OCT instrument was better correlated with VFS that was measured by the 3D OCT instrument (p = 0.031). The base level GCC thickness measured by all three instruments was approximately 65 % of that of normal eyes. The base level mRNFL thickness measured with the Cirrus and OCT instruments was 52  and 48 %, respectively, of that of normal eyes. The base level GCL/IPL thickness measured with the Cirrus and 3D instruments was 71 and 75 %, respectively, of that of normal eyes.

Conclusions

The three SD-OCT instruments evaluated showed similar structure–function relationships in terms of GCC and mRNFL measurements. The base levels of the macular parameters determined by the three instruments differed, due, at least partly, to the scanning area defined by each instrument.
Literature
1.
go back to reference Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13 (discussion 829–30).PubMedCrossRef Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13 (discussion 829–30).PubMedCrossRef
2.
3.
go back to reference Shah NN, Bowd C, Medeiros FA, Weinreb RN, Sample PA, Hoffmann EM, et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology. 2006;113:1593–602.PubMedCrossRef Shah NN, Bowd C, Medeiros FA, Weinreb RN, Sample PA, Hoffmann EM, et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology. 2006;113:1593–602.PubMedCrossRef
4.
go back to reference Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CY, et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.PubMedCrossRef Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CY, et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.PubMedCrossRef
5.
go back to reference Leite MT, Rao HL, Weinreb RN, Zangwill LM, Bowd C, Sample PA, et al. Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol. 2011;151(85–92):e1.PubMed Leite MT, Rao HL, Weinreb RN, Zangwill LM, Bowd C, Sample PA, et al. Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol. 2011;151(85–92):e1.PubMed
6.
go back to reference Kanamori A, Nakamura M, Tomioka M, Kawaka Y, Yamada Y, Negi A. Agreement among three types of spectral-domain optical coherent tomography instruments in measuring parapapillary retinal nerve fibre layer thickness. Br J Ophthalmol. 2012;96:832–7.PubMedCrossRef Kanamori A, Nakamura M, Tomioka M, Kawaka Y, Yamada Y, Negi A. Agreement among three types of spectral-domain optical coherent tomography instruments in measuring parapapillary retinal nerve fibre layer thickness. Br J Ophthalmol. 2012;96:832–7.PubMedCrossRef
7.
go back to reference Lee JR, Jeoung JW, Choi J, Choi JY, Park KH, Kim YD. Structure–function relationships in normal and glaucomatous eyes determined by time- and spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6424–30.PubMedCrossRef Lee JR, Jeoung JW, Choi J, Choi JY, Park KH, Kim YD. Structure–function relationships in normal and glaucomatous eyes determined by time- and spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6424–30.PubMedCrossRef
8.
go back to reference Cho JW, Sung KR, Lee S, Yun SC, Kang SY, Choi J, et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6401–7.PubMedCrossRef Cho JW, Sung KR, Lee S, Yun SC, Kang SY, Choi J, et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6401–7.PubMedCrossRef
9.
go back to reference Aptel F, Sayous R, Fortoul V, Beccat S, Denis P. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry. Am J Ophthalmol. 2010;150:825–33.PubMedCrossRef Aptel F, Sayous R, Fortoul V, Beccat S, Denis P. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry. Am J Ophthalmol. 2010;150:825–33.PubMedCrossRef
10.
go back to reference Rao HL, Zangwill LM, Weinreb RN, Leite MT, Sample PA, Medeiros FA. Structure–function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol. 2011;129:864–71.PubMedCrossRef Rao HL, Zangwill LM, Weinreb RN, Leite MT, Sample PA, Medeiros FA. Structure–function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol. 2011;129:864–71.PubMedCrossRef
11.
go back to reference Takagishi M, Hirooka K, Baba T, Mizote M, Shiraga F. Comparison of retinal nerve fiber layer thickness measurements using time domain and spectral domain optical coherence tomography, and visual field sensitivity. J Glaucoma. 2011;20:383–7.PubMedCrossRef Takagishi M, Hirooka K, Baba T, Mizote M, Shiraga F. Comparison of retinal nerve fiber layer thickness measurements using time domain and spectral domain optical coherence tomography, and visual field sensitivity. J Glaucoma. 2011;20:383–7.PubMedCrossRef
12.
go back to reference Kanamori A, Nakamura M, Tomioka M, Kawaka Y, Yamada Y, Negi A. Structure–function relationship among three types of spectral-domain optical coherent tomography instruments in measuring parapapillary retinal nerve fibre layer thickness. Acta Ophthalmol. 2013;91:e196–202.PubMedCrossRef Kanamori A, Nakamura M, Tomioka M, Kawaka Y, Yamada Y, Negi A. Structure–function relationship among three types of spectral-domain optical coherent tomography instruments in measuring parapapillary retinal nerve fibre layer thickness. Acta Ophthalmol. 2013;91:e196–202.PubMedCrossRef
13.
go back to reference Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:2012–7.PubMedCentralPubMedCrossRef Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:2012–7.PubMedCentralPubMedCrossRef
14.
15.
go back to reference Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(2305–14):e1–2. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(2305–14):e1–2.
16.
go back to reference Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–45.PubMedCrossRef Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–45.PubMedCrossRef
17.
go back to reference Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011;25:57–65.CrossRef Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011;25:57–65.CrossRef
18.
go back to reference Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Invest Ophthalmol Vis Sci. 2013;54:6025–32.PubMedCrossRef Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Invest Ophthalmol Vis Sci. 2013;54:6025–32.PubMedCrossRef
19.
go back to reference Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci. 2013;54:4478–84.PubMedCrossRef Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci. 2013;54:4478–84.PubMedCrossRef
20.
go back to reference Murata H, Hirasawa H, Aoyama Y, Sugisaki K, Araie M, Mayama C, et al. Identifying areas of the visual field important for quality of life in patients with glaucoma. PLoS One. 2013;8:e58695.PubMedCentralPubMedCrossRef Murata H, Hirasawa H, Aoyama Y, Sugisaki K, Araie M, Mayama C, et al. Identifying areas of the visual field important for quality of life in patients with glaucoma. PLoS One. 2013;8:e58695.PubMedCentralPubMedCrossRef
21.
go back to reference Sumi I, Shirato S, Matsumoto S, Araie M. The relationship between visual disability and visual field in patients with glaucoma. Ophthalmology. 2003;110:332–9.PubMedCrossRef Sumi I, Shirato S, Matsumoto S, Araie M. The relationship between visual disability and visual field in patients with glaucoma. Ophthalmology. 2003;110:332–9.PubMedCrossRef
22.
go back to reference Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.PubMedCrossRef Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.PubMedCrossRef
23.
go back to reference Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10° in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:940–6.PubMedCentralPubMedCrossRef Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10° in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:940–6.PubMedCentralPubMedCrossRef
24.
go back to reference Moura AL, Raza AS, Lazow MA, De Moraes CG, Hood DC. Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma. Eye (Lond). 2012;26:1188–93.CrossRef Moura AL, Raza AS, Lazow MA, De Moraes CG, Hood DC. Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma. Eye (Lond). 2012;26:1188–93.CrossRef
25.
go back to reference Na JH, Kook MS, Lee Y, Baek S. Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:5044–51.PubMedCrossRef Na JH, Kook MS, Lee Y, Baek S. Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:5044–51.PubMedCrossRef
26.
go back to reference Hood DC, Anderson SC, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48:3662–8.PubMedCrossRef Hood DC, Anderson SC, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48:3662–8.PubMedCrossRef
27.
go back to reference Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Medeiros FA. Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma. 2012;21:49–54.PubMedCentralPubMedCrossRef Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Medeiros FA. Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma. 2012;21:49–54.PubMedCentralPubMedCrossRef
28.
go back to reference Anderson DR, Patella VM. Automated static perimetry. St. Louis: Mosby; 1999. Anderson DR, Patella VM. Automated static perimetry. St. Louis: Mosby; 1999.
29.
go back to reference Omodaka K, Kunimatsu-Sanuki S, Morin R, Tsuda S, Yokoyama Y, Takahashi H, et al. Development of a new strategy of visual field testing for macular dysfunction in patients with open angle glaucoma. Jpn J Ophthalmol. 2013;57:457–62.PubMedCrossRef Omodaka K, Kunimatsu-Sanuki S, Morin R, Tsuda S, Yokoyama Y, Takahashi H, et al. Development of a new strategy of visual field testing for macular dysfunction in patients with open angle glaucoma. Jpn J Ophthalmol. 2013;57:457–62.PubMedCrossRef
30.
go back to reference Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul. 1998;8:3–30.CrossRef Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul. 1998;8:3–30.CrossRef
31.
go back to reference Mwanza JC, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, et al. Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:7872–9.PubMedCrossRef Mwanza JC, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, et al. Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:7872–9.PubMedCrossRef
32.
go back to reference Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.PubMedCentralPubMedCrossRef Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.PubMedCentralPubMedCrossRef
33.
go back to reference Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1412–21.PubMedCrossRef Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1412–21.PubMedCrossRef
34.
go back to reference Kim KE, Park KH, Jeoung JW, Kim SH, Kim DM. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol. 2014;. doi:10.1111/aos.12438. Kim KE, Park KH, Jeoung JW, Kim SH, Kim DM. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol. 2014;. doi:10.​1111/​aos.​12438.
35.
go back to reference Shin HY, Park HY, Jung KI, Park CK. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis. Invest Ophthalmol Vis Sci. 2013;54:7344–53.PubMedCrossRef Shin HY, Park HY, Jung KI, Park CK. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis. Invest Ophthalmol Vis Sci. 2013;54:7344–53.PubMedCrossRef
36.
go back to reference Takahashi M, Omodaka K, Maruyama K, Yamaguchi T, Himori N, Shiga Y, et al. Simulated visual fields produced from macular RNFLT data in patients with glaucoma. Curr Eye Res. 2013;38:1133–41.PubMedCrossRef Takahashi M, Omodaka K, Maruyama K, Yamaguchi T, Himori N, Shiga Y, et al. Simulated visual fields produced from macular RNFLT data in patients with glaucoma. Curr Eye Res. 2013;38:1133–41.PubMedCrossRef
38.
go back to reference Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye : an atlas and textbook. 13th edn. Philadelphia: Saunders; 1971. p. 687. Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye : an atlas and textbook. 13th edn. Philadelphia: Saunders; 1971. p. 687.
39.
go back to reference Moura AL, Raza AS, Lazow MA, De Moraes CG, Hood DC. Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma. Eye (Lond). 2012;26:1188–93.CrossRef Moura AL, Raza AS, Lazow MA, De Moraes CG, Hood DC. Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma. Eye (Lond). 2012;26:1188–93.CrossRef
41.
go back to reference Dichtl A, Jonas JB, Naumann GO. Retinal nerve fiber layer thickness in human eyes. Graefes Arch Clin Exp Ophthalmol. 1999;237:474–9.PubMedCrossRef Dichtl A, Jonas JB, Naumann GO. Retinal nerve fiber layer thickness in human eyes. Graefes Arch Clin Exp Ophthalmol. 1999;237:474–9.PubMedCrossRef
42.
go back to reference Drasdo N, Millican CL, Katholi CR, Curcio CA. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res. 2007;47:2901–11.PubMedCentralPubMedCrossRef Drasdo N, Millican CL, Katholi CR, Curcio CA. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res. 2007;47:2901–11.PubMedCentralPubMedCrossRef
43.
go back to reference Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, et al. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol. 2011;129:1529–36.PubMedCrossRef Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, et al. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol. 2011;129:1529–36.PubMedCrossRef
Metadata
Title
Difference in correspondence between visual field defect and inner macular layer thickness measured using three types of spectral-domain OCT instruments
Authors
Kaori Ueda
Akiyasu Kanamori
Azusa Akashi
Yuki Kawaka
Yuko Yamada
Makoto Nakamura
Publication date
01-01-2015
Publisher
Springer Japan
Published in
Japanese Journal of Ophthalmology / Issue 1/2015
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-014-0355-z

Other articles of this Issue 1/2015

Japanese Journal of Ophthalmology 1/2015 Go to the issue