Skip to main content
Top
Published in: Sports Medicine 14/2002

01-12-2002 | Leading Article

Dietary Recommendations and Athletic Menstrual Dysfunction

Author: Melinda M. Manore, PhD, RD, FACSM

Published in: Sports Medicine | Issue 14/2002

Login to get access

Abstract

Exercise-induced or athletic menstrual dysfunction (amenorrhoea, oligomenorrhoea, anovulation, luteal phase deficiency, delayed menarche) is more common in active women and can significantly affect health and sport performance. Although athletic amenorrhoea represents the most extreme form of menstrual dysfunction, other forms can also result in suppressed estrogen levels and affect bone health and fertility. A number of factors, such as energy balance, exercise intensity and training practices, bodyweight and composition, disordered eating behaviours, and physical and emotional stress levels, may contribute to the development of athletic menstrual dysfunction. There also appears to be a high degree of individual variationwith respect to the susceptibility of the reproductive axis to exercise and diet-related stresses.
The dietary issues of the female athlete with athletic menstrual dysfunction are similar to those of her eumenorrhoeic counterpart. The most common nutrition issues in active women are poor energy intake and/or poor food selection, which can lead to poor intakes of protein, carbohydrate and essential fatty acids. The most common micronutrients to be low are the bone-building nutrients, especially calcium, the B vitamins, iron and zinc. If energy drain is the primary contributing factor to athletic menstrual dysfunction, improved energy balance will improve overall nutritional status and may reverse the menstrual dysfunction, thus returning the athlete to normal reproductive function. Because bone health can be compromised in female athletes with menstrual dysfunction, intakes of bone-building nutrients are especially important. Iron and zinc are typically low in the diets of female athletes if meat products are avoided. Adequate intake of the B vitamins is also important to ensure adequate energy production and the building and repair of muscle tissue.
This review briefly discusses the various factors that may affect athletic menstrual dysfunction and two of the proposed mechanisms: the energy-drain and exercise-intensity hypotheses. Because energy drain can be a primary contributor to athletic menstrual dysfunction, recommendations for energy and the macro and micronutrients are reviewed. Methods for helping the female athlete to reverse athletic menstrual dysfunction are discussed. The health consequences of trying to restrict energy intake too dramatically while training are also reviewed, as is the importance of screening athletes for disordered eating. Vitamins and minerals of greatest concern for the female athlete are addressed and recommendations for intake are given.
Literature
1.
go back to reference Drinkwater BL, Nilson K, Chesnut CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311: 277–81PubMedCrossRef Drinkwater BL, Nilson K, Chesnut CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311: 277–81PubMedCrossRef
2.
3.
go back to reference Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes: a twelve-month prospective study. Am J Sports Med 1996; 24 (6): 810–8PubMedCrossRef Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes: a twelve-month prospective study. Am J Sports Med 1996; 24 (6): 810–8PubMedCrossRef
4.
go back to reference Bennell KL, Matheson G, Meeuwisse W, et al. Risk factors for stress fracture. Sports Med 1999; 28 (2): 91–122PubMedCrossRef Bennell KL, Matheson G, Meeuwisse W, et al. Risk factors for stress fracture. Sports Med 1999; 28 (2): 91–122PubMedCrossRef
5.
go back to reference Burrows M, Bird S. The physiology of the highly trained female endurance runner. Sports Med 2000; 30 (4): 281–300PubMedCrossRef Burrows M, Bird S. The physiology of the highly trained female endurance runner. Sports Med 2000; 30 (4): 281–300PubMedCrossRef
6.
go back to reference Laughlin GA, Yen SSC. Hypoleptinemia women athletes: absence of a diurnal rhythm with amenorrhea. J Clin Endocrinol Metab 1997; 82: 318–21PubMedCrossRef Laughlin GA, Yen SSC. Hypoleptinemia women athletes: absence of a diurnal rhythm with amenorrhea. J Clin Endocrinol Metab 1997; 82: 318–21PubMedCrossRef
7.
go back to reference Tataranni PA, Monroe MB, Dueck CA, et al. Adiposity, plasma leptin concentration and reproductive function in active and sedentary females. Int J Obes 1997; 21: 818–21CrossRef Tataranni PA, Monroe MB, Dueck CA, et al. Adiposity, plasma leptin concentration and reproductive function in active and sedentary females. Int J Obes 1997; 21: 818–21CrossRef
9.
go back to reference Manore MM, Thompson JA. Sport nutrition for health and performance. Champaign (IL): Human Kinetics, 2000 Manore MM, Thompson JA. Sport nutrition for health and performance. Champaign (IL): Human Kinetics, 2000
10.
go back to reference Prior JC, Vigna YM, Schechter MT, et al. Spinal bone loss and ovulation disturbances. N Engl JMed 1990; 323 (18): 1221–7CrossRef Prior JC, Vigna YM, Schechter MT, et al. Spinal bone loss and ovulation disturbances. N Engl JMed 1990; 323 (18): 1221–7CrossRef
11.
go back to reference Dueck CA, Manore MM, Matt KS. Role of energy balance in athletic menstrual dysfunction. Int J Sport Nutr 1996; 6: 90–116 Dueck CA, Manore MM, Matt KS. Role of energy balance in athletic menstrual dysfunction. Int J Sport Nutr 1996; 6: 90–116
12.
go back to reference Dueck CA, Matt KS, Manore MM, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr 1996; 6: 24–40PubMed Dueck CA, Matt KS, Manore MM, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr 1996; 6: 24–40PubMed
13.
go back to reference Williams NI, Young JC, McArthur JW, et al. Strenuous exercise with caloric restriction: effect on luteinizing hormone secretion. Med Sci Sports Exerc 1995; 27: 1390–8PubMed Williams NI, Young JC, McArthur JW, et al. Strenuous exercise with caloric restriction: effect on luteinizing hormone secretion. Med Sci Sports Exerc 1995; 27: 1390–8PubMed
14.
go back to reference Warren MP, Perlroth NE. The effects of intense exercise on the female reproductive system. J Endocrinol 2001; 170: 3–11PubMedCrossRef Warren MP, Perlroth NE. The effects of intense exercise on the female reproductive system. J Endocrinol 2001; 170: 3–11PubMedCrossRef
15.
go back to reference DeCree C. Sex steroid metabolism and menstrual irregularities in the exercising female. Sports Med 1998; 25 (6): 369–406CrossRef DeCree C. Sex steroid metabolism and menstrual irregularities in the exercising female. Sports Med 1998; 25 (6): 369–406CrossRef
16.
go back to reference Beals KA, Manore MM. Behavioral, psychological and physical characteristics of female athletes with subclinical eating disorders. Int J Sport Nutr Exerc Metab 2000; 10: 128–43PubMed Beals KA, Manore MM. Behavioral, psychological and physical characteristics of female athletes with subclinical eating disorders. Int J Sport Nutr Exerc Metab 2000; 10: 128–43PubMed
17.
go back to reference Beals KA, Manore MM. Disordered eating and menstrual dysfunction in female college athletes. Int J Sport Nutr Exerc Metab 2002; 12: 281–93PubMed Beals KA, Manore MM. Disordered eating and menstrual dysfunction in female college athletes. Int J Sport Nutr Exerc Metab 2002; 12: 281–93PubMed
18.
go back to reference Beals KA, Manore MM. The prevalence and consequences of subclinical eating disorders in female athletes. Int J Sport Nutr 1994; 4: 175–95PubMed Beals KA, Manore MM. The prevalence and consequences of subclinical eating disorders in female athletes. Int J Sport Nutr 1994; 4: 175–95PubMed
19.
go back to reference Williams NI, Caston-Balderrama AL, Helmreich DL, et al. Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea. Endocrinology 2001; 142 (6): 2381–9PubMedCrossRef Williams NI, Caston-Balderrama AL, Helmreich DL, et al. Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea. Endocrinology 2001; 142 (6): 2381–9PubMedCrossRef
20.
go back to reference Beals KA, Manore MM. Subclinical eating disorders in physically active women. Topics Clinical Nutr 1999; 14 (3): 14–29 Beals KA, Manore MM. Subclinical eating disorders in physically active women. Topics Clinical Nutr 1999; 14 (3): 14–29
21.
go back to reference Beals KA, Manore MM. Nutritional status of female athletes with subclinical eating disorders. J Am Diet Assoc 1998; 98: 419–25 Nutr 1999; 9: 70–88 Beals KA, Manore MM. Nutritional status of female athletes with subclinical eating disorders. J Am Diet Assoc 1998; 98: 419–25 Nutr 1999; 9: 70–88
22.
go back to reference Kopp-Woodroffe SA, Manore MM, Dueck CA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr 1999; 9: 70–88PubMed Kopp-Woodroffe SA, Manore MM, Dueck CA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr 1999; 9: 70–88PubMed
23.
24.
go back to reference Manore MM, Barr SI, Butterfield GA. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc 2000; 100: 1543–56 Manore MM, Barr SI, Butterfield GA. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc 2000; 100: 1543–56
25.
go back to reference De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and an ovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab 1998; 83 (12): 4220–32PubMedCrossRef De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and an ovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab 1998; 83 (12): 4220–32PubMedCrossRef
26.
go back to reference Loucks AB, Laughlin GA, Mortola JF, et al. Hypothalamic pituitary-thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab 1992; 75: 514–8PubMedCrossRef Loucks AB, Laughlin GA, Mortola JF, et al. Hypothalamic pituitary-thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab 1992; 75: 514–8PubMedCrossRef
27.
go back to reference Gremion G, Rizzoli R, Slosman D, et al. Oligoamenorrheic long-distance runners may lose more bone in spine than in femur. Med Sci Sports Exerc 2001; 33 (1): 15–21PubMed Gremion G, Rizzoli R, Slosman D, et al. Oligoamenorrheic long-distance runners may lose more bone in spine than in femur. Med Sci Sports Exerc 2001; 33 (1): 15–21PubMed
28.
go back to reference Thong FS, McLean C, Graham TE. Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors. J Appl Physiol 2000; 88: 2037–44PubMed Thong FS, McLean C, Graham TE. Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors. J Appl Physiol 2000; 88: 2037–44PubMed
29.
go back to reference Laughlin GA, Yen SSC. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab 1996; 81: 4301–9PubMedCrossRef Laughlin GA, Yen SSC. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab 1996; 81: 4301–9PubMedCrossRef
30.
go back to reference Baer JT. Endocrine parameters in amenorrheic and eumenorrheic adolescent female runners. Int J Sports Med 1993; 14: 191–5PubMedCrossRef Baer JT. Endocrine parameters in amenorrheic and eumenorrheic adolescent female runners. Int J Sports Med 1993; 14: 191–5PubMedCrossRef
31.
go back to reference Baer JT, Taper LJ. Amenorrheic and eumenorrheic adolescent runners: dietary intake and exercise training status. J Am Diet Assoc 1992; 92: 89–91PubMed Baer JT, Taper LJ. Amenorrheic and eumenorrheic adolescent runners: dietary intake and exercise training status. J Am Diet Assoc 1992; 92: 89–91PubMed
32.
go back to reference Snead DB, Stubbs CC, Weltman JY, et al. Dietary patterns, eating behaviors, and bone mineral density in women runners. Am J Clin Nutr 1992; 56: 705–11PubMed Snead DB, Stubbs CC, Weltman JY, et al. Dietary patterns, eating behaviors, and bone mineral density in women runners. Am J Clin Nutr 1992; 56: 705–11PubMed
33.
go back to reference Myerson M, Gutin B, Warren MP, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc 1991; 23: 15–22PubMed Myerson M, Gutin B, Warren MP, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc 1991; 23: 15–22PubMed
34.
go back to reference Howat PM, Carbo ML, Mills GQ, et al. The influence of diet, body fat, menstrual cycling, and activity upon the bone density of females. J Am Diet Assoc 1989; 89: 1305–7PubMed Howat PM, Carbo ML, Mills GQ, et al. The influence of diet, body fat, menstrual cycling, and activity upon the bone density of females. J Am Diet Assoc 1989; 89: 1305–7PubMed
35.
go back to reference Pettersson U, Stalnacke MM, Ahlenius GM, et al. Low bone mass density at multiple skeletal sites, including appendicular skeleton in amenorrheic runners. Calcif Tissue Int 1999; 64: 117–25PubMedCrossRef Pettersson U, Stalnacke MM, Ahlenius GM, et al. Low bone mass density at multiple skeletal sites, including appendicular skeleton in amenorrheic runners. Calcif Tissue Int 1999; 64: 117–25PubMedCrossRef
36.
go back to reference Zanker CL, Swaine IL. The relationship between serum oestradiol concentration and energy balance in young women distance runners. Int J Sports Med 1998; 19: 104–8PubMedCrossRef Zanker CL, Swaine IL. The relationship between serum oestradiol concentration and energy balance in young women distance runners. Int J Sports Med 1998; 19: 104–8PubMedCrossRef
37.
go back to reference Benardot D, Thompson WR. Energy from food for physical activity: enough and on time. ACSM’s Health and Fitness J 1999; 3 (4): 14–8CrossRef Benardot D, Thompson WR. Energy from food for physical activity: enough and on time. ACSM’s Health and Fitness J 1999; 3 (4): 14–8CrossRef
38.
go back to reference Manore MM. Fueling exercise. ACSM’s Health and Fitness J 2000; 4 (3): 34–5 Manore MM. Fueling exercise. ACSM’s Health and Fitness J 2000; 4 (3): 34–5
39.
go back to reference Warren MP. Health issues for women athletes: exercise-induced amenorrhea. J Clin Endocrionol Metab 1999; 84 (6): 1892–6CrossRef Warren MP. Health issues for women athletes: exercise-induced amenorrhea. J Clin Endocrionol Metab 1999; 84 (6): 1892–6CrossRef
40.
go back to reference Manore MM. Chronic dieting in active women: what are the health consequences? Womens Health Issues 1996; 6: 332–41PubMedCrossRef Manore MM. Chronic dieting in active women: what are the health consequences? Womens Health Issues 1996; 6: 332–41PubMedCrossRef
41.
go back to reference Manore MM. Running on empty: health consequences of chronic dieting in active women. ACSM’s Health and Fitness J 1998; 2 (2): 24–31 Manore MM. Running on empty: health consequences of chronic dieting in active women. ACSM’s Health and Fitness J 1998; 2 (2): 24–31
42.
go back to reference Otis CL, Drinkwater B, Johnson M, et al. American College of Sports Medicine position paper on the female athlete triad. Med Sci Sports Exerc 1997; 29: I-IXPubMedCrossRef Otis CL, Drinkwater B, Johnson M, et al. American College of Sports Medicine position paper on the female athlete triad. Med Sci Sports Exerc 1997; 29: I-IXPubMedCrossRef
43.
go back to reference Snow CM. Bone health and prevention of osteoporosis in active and athletic women. Clin Sports Med 1994; 13 (2): 389–403 Snow CM. Bone health and prevention of osteoporosis in active and athletic women. Clin Sports Med 1994; 13 (2): 389–403
44.
go back to reference Sundgot-Borgen J. Nutrient intake of elite female athletes suffering from eating disorders. Int J Sport Nutr 1993; 3: 431–42PubMed Sundgot-Borgen J. Nutrient intake of elite female athletes suffering from eating disorders. Int J Sport Nutr 1993; 3: 431–42PubMed
45.
go back to reference Sundgot-Borgen J. Prevalence of eating disorders in elite female athletes. Int J Sport Nutr 1993; 3: 29–40PubMed Sundgot-Borgen J. Prevalence of eating disorders in elite female athletes. Int J Sport Nutr 1993; 3: 29–40PubMed
46.
go back to reference Sundgot-Borgen J. Risk and trigger factors for the development of eating disorders in female elite athletes. Med Sci Sport Exerc 1994; 26: 414–9CrossRef Sundgot-Borgen J. Risk and trigger factors for the development of eating disorders in female elite athletes. Med Sci Sport Exerc 1994; 26: 414–9CrossRef
47.
48.
go back to reference Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr 1995; 61 Suppl.: S968–79 Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr 1995; 61 Suppl.: S968–79
49.
go back to reference Llyod TSJ, Triantafyllou JJ, Baker ER, et al. Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sport Exerc 1986; 18: 374–9 Llyod TSJ, Triantafyllou JJ, Baker ER, et al. Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sport Exerc 1986; 18: 374–9
50.
go back to reference Lemon PWR. Do athletes need more protein and amino acids? Int J Sport Nutr 1995; 5 Suppl.: S39–96 Lemon PWR. Do athletes need more protein and amino acids? Int J Sport Nutr 1995; 5 Suppl.: S39–96
51.
go back to reference Lemon PWR. Effects of exercise on dietary protein requirements. Int J Sport Nutr 1998; 8: 426–47PubMed Lemon PWR. Effects of exercise on dietary protein requirements. Int J Sport Nutr 1998; 8: 426–47PubMed
52.
go back to reference Food and Nutrition Board, National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989 Food and Nutrition Board, National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989
53.
go back to reference Manore MM. Dietary fat recommendations: how much fat do I need? ACSM’s Health and Fitness J 2000; 4 (1): 44–6 Manore MM. Dietary fat recommendations: how much fat do I need? ACSM’s Health and Fitness J 2000; 4 (1): 44–6
54.
go back to reference Manore MM. The effect of physical activity on thiamin, riboflavin, and vitamin B-6 requirements. Am J Clin Nutr 2000; 72 Suppl.: S598–606 Manore MM. The effect of physical activity on thiamin, riboflavin, and vitamin B-6 requirements. Am J Clin Nutr 2000; 72 Suppl.: S598–606
55.
go back to reference Faber M, Benade AJS. Mineral and vitamin intake in field athletes (discus-, hammer-, javelin-throwers and shot-putters). Int J Sport Med 1991; 12: 324–7CrossRef Faber M, Benade AJS. Mineral and vitamin intake in field athletes (discus-, hammer-, javelin-throwers and shot-putters). Int J Sport Med 1991; 12: 324–7CrossRef
56.
go back to reference Keith RE, Alt LA. Riboflavin status of female athletes consuming normal diets. Nutr Res 1991; 11: 727–34CrossRef Keith RE, Alt LA. Riboflavin status of female athletes consuming normal diets. Nutr Res 1991; 11: 727–34CrossRef
57.
go back to reference Nieman DC, Butler JV, Pollett LM, et al. Nutrient intake of marathon runners. J Am Diet Assoc 1989; 89: 1273–8PubMed Nieman DC, Butler JV, Pollett LM, et al. Nutrient intake of marathon runners. J Am Diet Assoc 1989; 89: 1273–8PubMed
58.
go back to reference Worme JD, Doubt TJ, Singh A, et al. Dietary patterns, gastrointestinal complaints, and nutrition knowledge of recreational triathletes. Am J Clin Nutr 1990; 51: 690–7PubMed Worme JD, Doubt TJ, Singh A, et al. Dietary patterns, gastrointestinal complaints, and nutrition knowledge of recreational triathletes. Am J Clin Nutr 1990; 51: 690–7PubMed
59.
go back to reference Kaiserauer S, Snyder AC, Sleeper M, et al. Nutritional, physiological, and menstrual status of distance runners. Med Sci Sports Exerc 1989; 21: 120–5PubMed Kaiserauer S, Snyder AC, Sleeper M, et al. Nutritional, physiological, and menstrual status of distance runners. Med Sci Sports Exerc 1989; 21: 120–5PubMed
60.
go back to reference Keith RE, O’Keeffe KA, Alt LA, et al. Dietary status of trained female cyclists. J Am Diet Assoc 1989; 89: 1620–3PubMed Keith RE, O’Keeffe KA, Alt LA, et al. Dietary status of trained female cyclists. J Am Diet Assoc 1989; 89: 1620–3PubMed
61.
go back to reference Manore MM, Besenfelder PD, Wells CL, et al. Nutrient intakes and iron status in female long-distance runners during training. J Am Diet Assoc 1989; 89: 257–9PubMed Manore MM, Besenfelder PD, Wells CL, et al. Nutrient intakes and iron status in female long-distance runners during training. J Am Diet Assoc 1989; 89: 257–9PubMed
62.
go back to reference Rucinski A. Relationship of body image and dietary intake of competitive ice skaters. J Am Diet Assoc 1989; 89: 98–100PubMed Rucinski A. Relationship of body image and dietary intake of competitive ice skaters. J Am Diet Assoc 1989; 89: 98–100PubMed
63.
go back to reference Manore MM. Vitamin B6 and exercise. Int J Sport Nutr 1994; 4: 89–103PubMed Manore MM. Vitamin B6 and exercise. Int J Sport Nutr 1994; 4: 89–103PubMed
64.
go back to reference Belko AZ, Obarzanek E, Kalkwarf HJ, et al. Effects of exercise on riboflavin requirements of young women. Am J Clin Nutr 1983; 37: 509–17PubMed Belko AZ, Obarzanek E, Kalkwarf HJ, et al. Effects of exercise on riboflavin requirements of young women. Am J Clin Nutr 1983; 37: 509–17PubMed
65.
go back to reference Belko AZ, Obarzanek E, Roach R, et al. Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. Am J Clin Nutr 1984; 40: 553–61PubMed Belko AZ, Obarzanek E, Roach R, et al. Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. Am J Clin Nutr 1984; 40: 553–61PubMed
66.
go back to reference Belko AZ, Meredith MP, Kalkwarf HJ, et al. Effects of exercise on riboflavin requirements: biological validation in weight reducing women. Am J Clin Nutr 1985; 41: 270–7PubMed Belko AZ, Meredith MP, Kalkwarf HJ, et al. Effects of exercise on riboflavin requirements: biological validation in weight reducing women. Am J Clin Nutr 1985; 41: 270–7PubMed
67.
go back to reference Winters LRT, Yoon JS, Kalkwarf HJ, et al. Riboflavin requirements and exercise adaptation in older women. Am J Clin Nutr 1992; 56: 526–32PubMed Winters LRT, Yoon JS, Kalkwarf HJ, et al. Riboflavin requirements and exercise adaptation in older women. Am J Clin Nutr 1992; 56: 526–32PubMed
68.
go back to reference Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine, National Research Council. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B-6, folate, vitamin B-12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press, 1998 Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine, National Research Council. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B-6, folate, vitamin B-12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press, 1998
69.
go back to reference Hansen CM, Leklem JE, Miller LT. Changes in vitamin B-6 status indicators of women fed a constant protein diet with varying levels of vitamin B-6. Am J Clin Nutr 1997; 66: 1379–87PubMed Hansen CM, Leklem JE, Miller LT. Changes in vitamin B-6 status indicators of women fed a constant protein diet with varying levels of vitamin B-6. Am J Clin Nutr 1997; 66: 1379–87PubMed
70.
go back to reference Leklem JE. Vitamin B-6: a status report. J Nutr 1990; 120: 1503–7PubMed Leklem JE. Vitamin B-6: a status report. J Nutr 1990; 120: 1503–7PubMed
71.
go back to reference Manore MM, Leklem JE, Walter MC. Vitamin B-6 metabolism as affected by exercise in trained and untrained women fed diets differing in carbohydrate and vitamin B-6 content. Am J Clin Nutr 1987; 46: 995–1004PubMed Manore MM, Leklem JE, Walter MC. Vitamin B-6 metabolism as affected by exercise in trained and untrained women fed diets differing in carbohydrate and vitamin B-6 content. Am J Clin Nutr 1987; 46: 995–1004PubMed
72.
go back to reference Crozier PG, Cordain L, Sampson DA. Exercise-induced changes in plasma vitamin B-6 concentrations do not vary with exercise intensity. Am J Clin Nutr 1994; 60: 552–8PubMed Crozier PG, Cordain L, Sampson DA. Exercise-induced changes in plasma vitamin B-6 concentrations do not vary with exercise intensity. Am J Clin Nutr 1994; 60: 552–8PubMed
73.
go back to reference Hoffman A, Reynolds RD, Smoak BL, et al. Plasma pyridoxal and pyridoxal 5’-phosphate concentrations in response to ingestion of water or glucose polymer during a 2-h run. Am J Clin Nutr 1991; 53: 84–9 Hoffman A, Reynolds RD, Smoak BL, et al. Plasma pyridoxal and pyridoxal 5’-phosphate concentrations in response to ingestion of water or glucose polymer during a 2-h run. Am J Clin Nutr 1991; 53: 84–9
74.
go back to reference Leklem JE, Shultz TD. Increased plasma pyridoxal 5’-phosphate and vitamin B6 in male adolescents after a 4500-meter run. Am J Clin Nutr 1983; 38: 541–8PubMed Leklem JE, Shultz TD. Increased plasma pyridoxal 5’-phosphate and vitamin B6 in male adolescents after a 4500-meter run. Am J Clin Nutr 1983; 38: 541–8PubMed
75.
go back to reference Rokitzki L, Sagredos AN, Reub F, et al. Acute changes in vitamin B6 status in endurance athletes before and after a marathon. Int J Sport Nutr 1994; 4: 154–65PubMed Rokitzki L, Sagredos AN, Reub F, et al. Acute changes in vitamin B6 status in endurance athletes before and after a marathon. Int J Sport Nutr 1994; 4: 154–65PubMed
76.
go back to reference Matter M, Stittfall T, Graves J, et al. The effect of iron and folate therapy on maximal exercise performance in female marathon runners with iron and folate deficiency. Clin Sci 1987; 72: 415–22PubMed Matter M, Stittfall T, Graves J, et al. The effect of iron and folate therapy on maximal exercise performance in female marathon runners with iron and folate deficiency. Clin Sci 1987; 72: 415–22PubMed
77.
go back to reference Haymes EM. Trace minerals and exercise. In: Wolinsky I, editor. Nutrition and exercise and sport. 3rd ed. Boca Raton (FL): CRC Press, 1998: 197–218 Haymes EM. Trace minerals and exercise. In: Wolinsky I, editor. Nutrition and exercise and sport. 3rd ed. Boca Raton (FL): CRC Press, 1998: 197–218
78.
go back to reference Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine, National Research Council. Dietary reference intakes: calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press, 1997 Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine, National Research Council. Dietary reference intakes: calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press, 1997
79.
go back to reference Clarkson PM, Haymes EM. Exercise and mineral status of athletes: calcium, magnesium, phosphorus, and iron. Med Sci Sports Exerc 1995; 27: 831–43PubMed Clarkson PM, Haymes EM. Exercise and mineral status of athletes: calcium, magnesium, phosphorus, and iron. Med Sci Sports Exerc 1995; 27: 831–43PubMed
80.
go back to reference Haymes EM, Clarkson PM. Minerals and trace minerals. In: Berning JR, Steen SN, editors. Nutrition and sport and exercise. Gaithersburg (MD): Aspen Publishers, 1998: 77–107 Haymes EM, Clarkson PM. Minerals and trace minerals. In: Berning JR, Steen SN, editors. Nutrition and sport and exercise. Gaithersburg (MD): Aspen Publishers, 1998: 77–107
81.
go back to reference Tobin BW, Beard JL. Iron. In: Wolinsky I, Driskell JA, editors. Sport nutrition: vitamins and trace elements. Boca Raton (FL): CRC Press, 1997: 137–56 Tobin BW, Beard JL. Iron. In: Wolinsky I, Driskell JA, editors. Sport nutrition: vitamins and trace elements. Boca Raton (FL): CRC Press, 1997: 137–56
82.
go back to reference Chatard JC, Mujika I, Guy C, et al. Anaemia and iron deficiency in athletes: practical recommendations for treatment. Sports Med 1999; 27 (4): 229–40PubMedCrossRef Chatard JC, Mujika I, Guy C, et al. Anaemia and iron deficiency in athletes: practical recommendations for treatment. Sports Med 1999; 27 (4): 229–40PubMedCrossRef
83.
go back to reference Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine, National Research Council. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: National Academy Press, 2000 Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine, National Research Council. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: National Academy Press, 2000
84.
go back to reference Duester PA, Day BA, Singh A, et al. Zinc status of highly trained women runners and untrained women. AmJ Clin Nutr 1989; 49: 1295–301 Duester PA, Day BA, Singh A, et al. Zinc status of highly trained women runners and untrained women. AmJ Clin Nutr 1989; 49: 1295–301
85.
go back to reference Lukaski HC, Hoverson BS, Gallagher SK, et al. Physical training and copper, iron and zinc status of swimmers. Am J Clin Nutr 1990; 51: 1093–9PubMed Lukaski HC, Hoverson BS, Gallagher SK, et al. Physical training and copper, iron and zinc status of swimmers. Am J Clin Nutr 1990; 51: 1093–9PubMed
86.
go back to reference Lukaski HC, Siders WA, Hoverson BS, et al. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int J Sports Med 1996; 17: 535–40PubMedCrossRef Lukaski HC, Siders WA, Hoverson BS, et al. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int J Sports Med 1996; 17: 535–40PubMedCrossRef
Metadata
Title
Dietary Recommendations and Athletic Menstrual Dysfunction
Author
Melinda M. Manore, PhD, RD, FACSM
Publication date
01-12-2002
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 14/2002
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200232140-00002

Other articles of this Issue 14/2002

Sports Medicine 14/2002 Go to the issue

Correspondence

Authors’ reply