Skip to main content
Top
Published in: Intensive Care Medicine 12/2015

01-12-2015 | Review

Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago

Authors: Didier Dreyfuss, Jean-Damien Ricard, Stéphane Gaudry

Published in: Intensive Care Medicine | Issue 12/2015

Login to get access

Abstract

High frequency oscillatory ventilation (HFOV) has been the subject of extensive physiological research for 30 years and even more so of an intense debate on its potential usefulness in the treatment of acute respiratory distress syndrome (ARDS). This technique has been enthusiastically promoted by some teams until two high-quality randomized clinical trials in adults with ARDS showed that HFOV did not decrease and might have even increased mortality. As a consequence of these results, physiological concepts such as atelectrauma and biotrauma on which ARDS management with HFOV were based should be reexamined. In contrast, the concept of volutrauma, i.e., end-inspiratory overdistension, as the cause for ventilator-induced lung injury might help explain excess mortality during mechanical ventilation of ARDS when inspiratory volumes are too high. This is what might have happened during one of the recent studies on HFOV. Failure of this complex technique must be put in perspective with the dramatic improvement of ARDS prognosis with very simple interventions such as tidal volume reduction, early pharmacological paralysis, and prone positioning which all limited end-inspiratory volume.
Literature
2.
go back to reference Ferguson ND, Slutsky AS (2008) Point: high-frequency ventilation is the optimal physiological approach to ventilate ARDS patients. J Appl Physiol 104(4):1230–1231CrossRefPubMed Ferguson ND, Slutsky AS (2008) Point: high-frequency ventilation is the optimal physiological approach to ventilate ARDS patients. J Appl Physiol 104(4):1230–1231CrossRefPubMed
3.
go back to reference Froese A, Ferguson N (2013) High-frequency ventilation. In: Tobin M (ed) Principles and practice of mechanical ventilation, 3rd edn. McGraw Hill, New York, pp 495–516 Froese A, Ferguson N (2013) High-frequency ventilation. In: Tobin M (ed) Principles and practice of mechanical ventilation, 3rd edn. McGraw Hill, New York, pp 495–516
4.
go back to reference Chang HK (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol Respir Environ Exerc Physiol 56(3):553–563PubMed Chang HK (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol Respir Environ Exerc Physiol 56(3):553–563PubMed
5.
go back to reference Cha EJ, Chow E, Chang HK, Yamashiro SM (1988) Lung hyperinflation in isolated dog lungs during high-frequency oscillation. J Appl Physiol 65(3):1172–1179PubMed Cha EJ, Chow E, Chang HK, Yamashiro SM (1988) Lung hyperinflation in isolated dog lungs during high-frequency oscillation. J Appl Physiol 65(3):1172–1179PubMed
6.
go back to reference The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–8 The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–8
7.
go back to reference Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363(12):1107–1116CrossRefPubMed Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363(12):1107–1116CrossRefPubMed
8.
go back to reference Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168CrossRefPubMed Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168CrossRefPubMed
9.
go back to reference Dreyfuss D (2004) To consent or not to consent, that is (not) the (sole) question. “And there is nothing new under the sun”. Kohelet (also known as Ecclesiastes), 1:9. Bible. Intensive Care Med 30(2):180–182CrossRefPubMed Dreyfuss D (2004) To consent or not to consent, that is (not) the (sole) question. “And there is nothing new under the sun”. Kohelet (also known as Ecclesiastes), 1:9. Bible. Intensive Care Med 30(2):180–182CrossRefPubMed
10.
11.
go back to reference Dreyfuss D (2004) Is it better to consent to an RCT or to care? Muetadeltaepsilonnu alphagammaalphanu (“nothing in excess”). Intensive Care Med 31:345–355CrossRefPubMed Dreyfuss D (2004) Is it better to consent to an RCT or to care? Muetadeltaepsilonnu alphagammaalphanu (“nothing in excess”). Intensive Care Med 31:345–355CrossRefPubMed
12.
go back to reference The HIFI Study Group (1989) High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320(2):88–93CrossRef The HIFI Study Group (1989) High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320(2):88–93CrossRef
13.
go back to reference Cools F, Askie LM, Offringa M, Asselin JM, Calvert SA, Courtney SE et al (2010) Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients’ data. Lancet 375(9731):2082–2091CrossRefPubMed Cools F, Askie LM, Offringa M, Asselin JM, Calvert SA, Courtney SE et al (2010) Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients’ data. Lancet 375(9731):2082–2091CrossRefPubMed
14.
go back to reference Gupta P, Green JW, Tang X, Gall CM, Gossett JM, Rice TB et al (2014) Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr 168(3):243–249CrossRefPubMed Gupta P, Green JW, Tang X, Gall CM, Gossett JM, Rice TB et al (2014) Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr 168(3):243–249CrossRefPubMed
15.
go back to reference Dreyfuss D, Ricard JD, Gaudry S (2015) Ventilation par oscillations à haute fréquence: rideau? Réanimation 24:4–10CrossRef Dreyfuss D, Ricard JD, Gaudry S (2015) Ventilation par oscillations à haute fréquence: rideau? Réanimation 24:4–10CrossRef
16.
go back to reference Amato MBP, Barbas CSV, Medeiros DM, Schettino GDPP, Filho GL, Kairalla RA et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:1835–1846CrossRefPubMed Amato MBP, Barbas CSV, Medeiros DM, Schettino GDPP, Filho GL, Kairalla RA et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:1835–1846CrossRefPubMed
17.
go back to reference Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349CrossRefPubMed Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349CrossRefPubMed
18.
go back to reference Hamilton PP, Onayemi A, Smyth JA, Gillan JE, Cutz E, Froese AB et al (1983) Comparison of conventional and high-frequency ventilation: oxygenation and lung pathology. J Appl Physiol 55:131–138PubMed Hamilton PP, Onayemi A, Smyth JA, Gillan JE, Cutz E, Froese AB et al (1983) Comparison of conventional and high-frequency ventilation: oxygenation and lung pathology. J Appl Physiol 55:131–138PubMed
19.
go back to reference McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192CrossRefPubMed McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192CrossRefPubMed
20.
go back to reference Fan E, Needham DM, Stewart TE (2005) Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 294(22):2889–2896CrossRefPubMed Fan E, Needham DM, Stewart TE (2005) Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 294(22):2889–2896CrossRefPubMed
21.
go back to reference Tierney DF (2003) Ventilator-induced lung injury occurs in rats, but does it occur in humans? Am J Respir Crit Care Med 168(12):1414–1415CrossRefPubMed Tierney DF (2003) Ventilator-induced lung injury occurs in rats, but does it occur in humans? Am J Respir Crit Care Med 168(12):1414–1415CrossRefPubMed
22.
go back to reference Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies (state of the art). Am J Respir Crit Care Med 157:1–30CrossRef Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies (state of the art). Am J Respir Crit Care Med 157:1–30CrossRef
23.
go back to reference Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21:131–143CrossRefPubMed Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21:131–143CrossRefPubMed
24.
25.
go back to reference Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMed Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMed
26.
go back to reference Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMed Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMed
27.
go back to reference Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5):1159–1164CrossRefPubMed Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5):1159–1164CrossRefPubMed
28.
go back to reference Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18:139–141CrossRefPubMed Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18:139–141CrossRefPubMed
29.
go back to reference Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203CrossRefPubMed Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203CrossRefPubMed
30.
31.
go back to reference Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCentralCrossRefPubMed Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCentralCrossRefPubMed
32.
go back to reference Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMed Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMed
33.
go back to reference Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High peep decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59:1278–1285CrossRefPubMed Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High peep decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59:1278–1285CrossRefPubMed
34.
go back to reference Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14:538–546CrossRefPubMed Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14:538–546CrossRefPubMed
35.
go back to reference Muscedere JG, Mullen JBM, Gan K, Bryan AC, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334CrossRefPubMed Muscedere JG, Mullen JBM, Gan K, Bryan AC, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334CrossRefPubMed
36.
go back to reference Sohma A, Brampton WJ, Dunnill MS, Sykes MK (1992) Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 18:112–117CrossRefPubMed Sohma A, Brampton WJ, Dunnill MS, Sykes MK (1992) Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 18:112–117CrossRefPubMed
37.
go back to reference Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165(12):1647–1653CrossRefPubMed Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165(12):1647–1653CrossRefPubMed
38.
go back to reference de Prost N, Saumon G, Dreyfuss D (2011) Modeling the time-course of ventilator-induced lung injury: what can we learn from interspecies discrepancies? Intensive Care Med 37(12):1901–1903CrossRefPubMed de Prost N, Saumon G, Dreyfuss D (2011) Modeling the time-course of ventilator-induced lung injury: what can we learn from interspecies discrepancies? Intensive Care Med 37(12):1901–1903CrossRefPubMed
39.
go back to reference The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336 The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336
40.
go back to reference Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645CrossRefPubMed Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645CrossRefPubMed
41.
go back to reference Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655CrossRefPubMed Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655CrossRefPubMed
42.
go back to reference Young D, Lamb SE, Shah S, Mackenzie I, Tunnicliffe W, Lall R et al (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 368:806–813CrossRefPubMed Young D, Lamb SE, Shah S, Mackenzie I, Tunnicliffe W, Lall R et al (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 368:806–813CrossRefPubMed
43.
go back to reference Dreyfuss D, Ricard JD, Saumon G (2003) On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med 167(11):1467–1471CrossRefPubMed Dreyfuss D, Ricard JD, Saumon G (2003) On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med 167(11):1467–1471CrossRefPubMed
44.
go back to reference Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163(5):1176–1180CrossRefPubMed Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163(5):1176–1180CrossRefPubMed
45.
go back to reference Kirby RR, Downs JB, Civetta JM, Modell JH, Dannemiller F, Klein EF et al (1975) High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67:156–163CrossRefPubMed Kirby RR, Downs JB, Civetta JM, Modell JH, Dannemiller F, Klein EF et al (1975) High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67:156–163CrossRefPubMed
46.
go back to reference Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873CrossRefPubMed Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873CrossRefPubMed
47.
go back to reference Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H et al (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327CrossRefPubMed Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H et al (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327CrossRefPubMed
48.
go back to reference Minneci PC, Eichacker PQ, Danner RL, Banks SM, Natanson C, Deans KJ (2008) The importance of usual care control groups for safety monitoring and validity during critical care research. Intensive Care Med 34(5):942–947CrossRefPubMed Minneci PC, Eichacker PQ, Danner RL, Banks SM, Natanson C, Deans KJ (2008) The importance of usual care control groups for safety monitoring and validity during critical care research. Intensive Care Med 34(5):942–947CrossRefPubMed
49.
go back to reference Silverman HJ, Miller FG (2004) Control group selection in critical care randomized controlled trials evaluating interventional strategies: an ethical assessment. Crit Care Med 32(3):852–857CrossRefPubMed Silverman HJ, Miller FG (2004) Control group selection in critical care randomized controlled trials evaluating interventional strategies: an ethical assessment. Crit Care Med 32(3):852–857CrossRefPubMed
50.
go back to reference Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102CrossRefPubMed Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102CrossRefPubMed
51.
go back to reference Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB et al (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104(48):18886–18891PubMedCentralCrossRefPubMed Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB et al (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104(48):18886–18891PubMedCentralCrossRefPubMed
52.
go back to reference Hussein O, Walters B, Stroetz R, Valencia P, McCall D, Hubmayr RD (2013) Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 305(7):L478–L484PubMedCentralCrossRefPubMed Hussein O, Walters B, Stroetz R, Valencia P, McCall D, Hubmayr RD (2013) Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 305(7):L478–L484PubMedCentralCrossRefPubMed
53.
go back to reference Brusasco V, Beck KC, Crawford M, Rehder K (1986) Resonant amplification of delivered volume during high-frequency ventilation. J Appl Physiol (1985) 60(3):885–892 Brusasco V, Beck KC, Crawford M, Rehder K (1986) Resonant amplification of delivered volume during high-frequency ventilation. J Appl Physiol (1985) 60(3):885–892
54.
go back to reference Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755CrossRefPubMed Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755CrossRefPubMed
55.
go back to reference Zivanovic S, Peacock J, Alcazar-Paris M, Lo JW, Lunt A, Marlow N et al (2014) Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med 370(12):1121–1130PubMedCentralCrossRefPubMed Zivanovic S, Peacock J, Alcazar-Paris M, Lo JW, Lunt A, Marlow N et al (2014) Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med 370(12):1121–1130PubMedCentralCrossRefPubMed
56.
go back to reference Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M et al (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40(5):1539–1545CrossRefPubMed Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M et al (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40(5):1539–1545CrossRefPubMed
57.
go back to reference Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33(3):444–447CrossRefPubMed Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33(3):444–447CrossRefPubMed
58.
go back to reference Papazian L, Gainnier M, Marin V, Donati S, Arnal JM, Demory D et al (2005) Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med 33(10):2162–2171CrossRefPubMed Papazian L, Gainnier M, Marin V, Donati S, Arnal JM, Demory D et al (2005) Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med 33(10):2162–2171CrossRefPubMed
59.
go back to reference Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A et al (2011) The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 37(9):1447–1457CrossRefPubMed Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A et al (2011) The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 37(9):1447–1457CrossRefPubMed
60.
go back to reference Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104PubMedCentralCrossRefPubMed Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104PubMedCentralCrossRefPubMed
61.
go back to reference de Prost N, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol (1985) 102(2):794–802CrossRef de Prost N, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol (1985) 102(2):794–802CrossRef
62.
go back to reference Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high airway pressures. J Appl Physiol 57:1809–1816PubMed Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high airway pressures. J Appl Physiol 57:1809–1816PubMed
64.
go back to reference Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28(2):295–303CrossRefPubMed Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28(2):295–303CrossRefPubMed
65.
go back to reference Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25(1):16–27CrossRefPubMed Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25(1):16–27CrossRefPubMed
66.
go back to reference Marini JC (2013) Mechanical ventilation in the acute respiratory distress syndrome. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York, pp 699–726 Marini JC (2013) Mechanical ventilation in the acute respiratory distress syndrome. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York, pp 699–726
67.
go back to reference Brower RG, Matthay M, Schoenfeld D (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials. Am J Respir Crit Care Med 166(11):1515–1517CrossRefPubMed Brower RG, Matthay M, Schoenfeld D (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials. Am J Respir Crit Care Med 166(11):1515–1517CrossRefPubMed
68.
go back to reference Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166(11):1510–1514CrossRefPubMed Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166(11):1510–1514CrossRefPubMed
69.
go back to reference Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM et al (2004) Ventilator associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–1824CrossRefPubMed Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM et al (2004) Ventilator associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–1824CrossRefPubMed
70.
go back to reference Herasevich V, Tsapenko M, Kojicic M, Ahmed A, Kashyap R, Venkata C et al (2011) Limiting ventilator-induced lung injury through individual electronic medical record surveillance. Crit Care Med 39(1):34–39CrossRefPubMed Herasevich V, Tsapenko M, Kojicic M, Ahmed A, Kashyap R, Venkata C et al (2011) Limiting ventilator-induced lung injury through individual electronic medical record surveillance. Crit Care Med 39(1):34–39CrossRefPubMed
Metadata
Title
Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago
Authors
Didier Dreyfuss
Jean-Damien Ricard
Stéphane Gaudry
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 12/2015
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-015-4062-0

Other articles of this Issue 12/2015

Intensive Care Medicine 12/2015 Go to the issue

Imaging in Intensive Care Medicine

A large pediculated moving mass in the left atrium