Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 4/2005

01-04-2005 | Original Article

Diagnosis of Alzheimer’s disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy?

Authors: Takao Kubota, Yo Ushijima, Kei Yamada, Chio Okuyama, Osamu Kizu, Tsunehiko Nishimura

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 4/2005

Login to get access

Abstract

Purpose

The purpose of this study was to compare the accuracy of MR imaging and brain perfusion single-photon emission tomography (SPECT) in diagnosing Alzheimer’s disease (AD).

Methods

The transaxial section display of brain perfusion SPECT, three-dimensional stereotactic surface projection (3D-SSP) SPECT image sets, thin-section MR imaging of the hippocampus and perfusion MR imaging were evaluated in 66 subjects comprising 35 AD patients and 31 subjects without AD. SPECT and MR imaging were visually interpreted by two experts and two novices, and the diagnostic ability of each modality was evaluated by receiver operating characteristic (ROC) analysis.

Results

In the experts’ interpretations, there was no significant difference in the area under the ROC curve ( A z ) between 3D-SSP and thin-section MR imaging, whereas the A z of transaxial SPECT display was significantly lower than that of 3D-SSP (3D-SSP: 0.97, thin-section MR imaging: 0.96, transaxial SPECT: 0.91), and the A z of perfusion MR imaging was lowest (0.63). The sensitivity and specificity of each modality were, respectively, 80.0% and 96.8% for 3D-SSP, 77.1% and 96.8% for thin-section MR imaging, 60.0% and 93.5% for transaxial SPECT display and 34.3% and 100% for perfusion MR imaging. In the novices’ interpretations, the A z , sensitivity and specificity of 3D-SSP were superior to those of thin-section MR imaging.

Conclusion

Thin-section hippocampal MR imaging and 3D-SSP image sets had potentially equivalent value for the diagnosis of AD, and they were superior to transaxial SPECT display and perfusion MR imaging. For avoidance of the effect of interpreters’ experience on image evaluation, 3D-SSP appears to be optimal.
Literature
1.
go back to reference Devous MD Sr. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med Mol Imaging 2002;29(12):1685–96.CrossRefPubMed Devous MD Sr. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med Mol Imaging 2002;29(12):1685–96.CrossRefPubMed
2.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36(7):1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36(7):1238–48.PubMed
3.
go back to reference Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 1996;198(3):837–43.PubMed Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 1996;198(3):837–43.PubMed
4.
go back to reference Duara R, Grady C, Haxby J, Schlageter N, Berg G, Rapoport SI. Positron emission tomography in Alzheimer’s disease. Neurology 1986;36(7):879–87.PubMed Duara R, Grady C, Haxby J, Schlageter N, Berg G, Rapoport SI. Positron emission tomography in Alzheimer’s disease. Neurology 1986;36(7):879–87.PubMed
5.
go back to reference Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. A longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002;43(3):304–11.PubMed Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. A longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002;43(3):304–11.PubMed
6.
go back to reference Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42(1):85–94.PubMed Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42(1):85–94.PubMed
7.
go back to reference Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994;344(8926):895.CrossRef Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994;344(8926):895.CrossRef
8.
go back to reference Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, Albert MS. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998;50(6):1563–71.PubMed Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, Albert MS. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998;50(6):1563–71.PubMed
9.
go back to reference Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med 2000;41(7):1155–62.PubMed Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med 2000;41(7):1155–62.PubMed
10.
go back to reference Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003;226(2):315–36.PubMed Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003;226(2):315–36.PubMed
11.
go back to reference Fernandez A, Arrazola J, Maestu F, Amo C, Gil-Gregorio P, Wienbruch C, Ortiz T. Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. Am J Neuroradiol 2003;24(3):481–7.PubMed Fernandez A, Arrazola J, Maestu F, Amo C, Gil-Gregorio P, Wienbruch C, Ortiz T. Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. Am J Neuroradiol 2003;24(3):481–7.PubMed
12.
go back to reference Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001;358(9277):201–5.CrossRefPubMed Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001;358(9277):201–5.CrossRefPubMed
13.
go back to reference Savolainen S, Laakso MP, Paljarvi L, Alafuzoff I, Hurskainen H, Partanen K, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. Am J Neuroradiol 2000;21(2):409–14.PubMed Savolainen S, Laakso MP, Paljarvi L, Alafuzoff I, Hurskainen H, Partanen K, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. Am J Neuroradiol 2000;21(2):409–14.PubMed
14.
go back to reference Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 1999;52(1):91–100.PubMed Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 1999;52(1):91–100.PubMed
15.
go back to reference Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, et al. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 1999;353(9146):38–40. Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, et al. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 1999;353(9146):38–40.
16.
go back to reference Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001;71(4):441–7.CrossRefPubMed Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001;71(4):441–7.CrossRefPubMed
17.
go back to reference Juottonen K, Laakso MP, Partanen K, Soininen H. Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. Am J Neuroradiol 1999;20(1):139–44.PubMed Juottonen K, Laakso MP, Partanen K, Soininen H. Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. Am J Neuroradiol 1999;20(1):139–44.PubMed
18.
go back to reference Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54(9):1760–7.PubMed Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54(9):1760–7.PubMed
19.
go back to reference Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. Am J Neuroradiol 2001;22(6):1030–6.PubMed Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. Am J Neuroradiol 2001;22(6):1030–6.PubMed
20.
go back to reference Yoshiura T, Mihara F, Kuwabara Y, Ogomori K, Kaneko K, Tanaka A, et al. MR relative cerebral blood flow mapping of Alzheimer disease: correlation with Tc-99m HMPAO SPECT. Acad Radiol 2002;9(12):1383–7.CrossRefPubMed Yoshiura T, Mihara F, Kuwabara Y, Ogomori K, Kaneko K, Tanaka A, et al. MR relative cerebral blood flow mapping of Alzheimer disease: correlation with Tc-99m HMPAO SPECT. Acad Radiol 2002;9(12):1383–7.CrossRefPubMed
21.
go back to reference Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–54.PubMed Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–54.PubMed
22.
go back to reference McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47(5):1113–24.PubMed McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47(5):1113–24.PubMed
23.
go back to reference Drzezga A, Arnold S, Minoshima S, Noachtar S, Szecsi J, Winkler P, et al. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999;40(5):737–46.PubMed Drzezga A, Arnold S, Minoshima S, Noachtar S, Szecsi J, Winkler P, et al. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999;40(5):737–46.PubMed
24.
go back to reference Bartenstein P, Minoshima S, Hirsch C, Buch K, Willoch F, Mosch D, et al. Quantitative assessment of cerebral blood flow in patients with Alzheimer’s disease by SPECT. J Nucl Med 1997;38(7):1095–101.PubMed Bartenstein P, Minoshima S, Hirsch C, Buch K, Willoch F, Mosch D, et al. Quantitative assessment of cerebral blood flow in patients with Alzheimer’s disease by SPECT. J Nucl Med 1997;38(7):1095–101.PubMed
25.
go back to reference Yamada K, Wu O, Gonzalez RG, Bakker D, Ostergaard L, Copen WA, et al. Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 2002;33(1):87–94.CrossRefPubMed Yamada K, Wu O, Gonzalez RG, Bakker D, Ostergaard L, Copen WA, et al. Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 2002;33(1):87–94.CrossRefPubMed
26.
go back to reference Metz CE, Wang PL, Kronman HB. A new approach for testing the significance of differences between ROC curves measured from correlated data. In: Deconinck F, editor. Information processing in medical imaging. The Hague: Martinus Nijhoff; 1984. p. 432–45. Metz CE, Wang PL, Kronman HB. A new approach for testing the significance of differences between ROC curves measured from correlated data. In: Deconinck F, editor. Information processing in medical imaging. The Hague: Martinus Nijhoff; 1984. p. 432–45.
27.
go back to reference Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986;21(9):720–33.PubMed Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986;21(9):720–33.PubMed
28.
go back to reference Metz CE. ome practical issues of experimental design and data analysis in radiological ROC studies. Invest Radiol 1989;24(3):234–45.PubMed Metz CE. ome practical issues of experimental design and data analysis in radiological ROC studies. Invest Radiol 1989;24(3):234–45.PubMed
29.
go back to reference Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002;17(2):618–30.CrossRefPubMed Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002;17(2):618–30.CrossRefPubMed
30.
go back to reference Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology 2000;54(6):1304–9.PubMed Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology 2000;54(6):1304–9.PubMed
31.
go back to reference Oikawa H, Sasaki M, Tamakawa Y, Ehara S, Tohyama K. The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. Am J Neuroradiol 2002;23(10):1747–56.PubMed Oikawa H, Sasaki M, Tamakawa Y, Ehara S, Tohyama K. The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. Am J Neuroradiol 2002;23(10):1747–56.PubMed
32.
go back to reference Hittmair K, Wimberger D, Rand T, Prayer L, Bernert G, Kramer J, Imhof H. MR assessment of brain maturation: comparison of sequences. Am J Neuroradiol 1994;15(3):425–33.PubMed Hittmair K, Wimberger D, Rand T, Prayer L, Bernert G, Kramer J, Imhof H. MR assessment of brain maturation: comparison of sequences. Am J Neuroradiol 1994;15(3):425–33.PubMed
33.
go back to reference Nakamura H, Yamada K, Kizu O, Ito H, Nishimura T. Optimization of TI values in inversion-recovery MR sequences for the depiction of fine structures within gray and white matter: separation of globus pallidus interna and externa. Acad Radiol 2003;10(1):58–63.CrossRefPubMed Nakamura H, Yamada K, Kizu O, Ito H, Nishimura T. Optimization of TI values in inversion-recovery MR sequences for the depiction of fine structures within gray and white matter: separation of globus pallidus interna and externa. Acad Radiol 2003;10(1):58–63.CrossRefPubMed
34.
go back to reference Mirzaei S, Knoll P, Koehn H, Bruecke T. Assessment of diffuse Lewy body disease by 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET). BMC Nucl Med 2003;3(1):1.CrossRefPubMed Mirzaei S, Knoll P, Koehn H, Bruecke T. Assessment of diffuse Lewy body disease by 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET). BMC Nucl Med 2003;3(1):1.CrossRefPubMed
35.
go back to reference Minoshima S, Foster NL, Petrie EC, Albin RL, Frey KA, Kuhl DE. Neuroimaging in dementia with Lewy bodies: metabolism, neurochemistry, and morphology (review). J Geriatr Psychiatry Neurol 2002;15(4):200–9.PubMed Minoshima S, Foster NL, Petrie EC, Albin RL, Frey KA, Kuhl DE. Neuroimaging in dementia with Lewy bodies: metabolism, neurochemistry, and morphology (review). J Geriatr Psychiatry Neurol 2002;15(4):200–9.PubMed
36.
go back to reference Pasquier J, Michel BF, Brenot-Rossi I, Hassan-Sebbag N, Sauvan R, Gastaut JL. Value of 99mTc-ECD SPET for the diagnosis of dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2002;29(10):1342–8.CrossRefPubMed Pasquier J, Michel BF, Brenot-Rossi I, Hassan-Sebbag N, Sauvan R, Gastaut JL. Value of 99mTc-ECD SPET for the diagnosis of dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2002;29(10):1342–8.CrossRefPubMed
37.
go back to reference Grossman M, Payer F, Onishi K, D’Esposito M, Morrison D, Sadek A, Alavi A. Language comprehension and regional cerebral defects in frontotemporal degeneration and Alzheimer’s disease. Neurology 1998;50(1):157–63.PubMed Grossman M, Payer F, Onishi K, D’Esposito M, Morrison D, Sadek A, Alavi A. Language comprehension and regional cerebral defects in frontotemporal degeneration and Alzheimer’s disease. Neurology 1998;50(1):157–63.PubMed
38.
go back to reference Charpentier P, Lavenu I, Defebvre L, Duhamel A, Lecouffe P, Pasquier F, Steinling M. Alzheimer’s disease and frontotemporal dementia are differentiated by discriminant analysis applied to 99mTc-HMPAO SPECT data. J Neurol Neurosurg Psychiatry 2000;69(5):661–3.CrossRefPubMed Charpentier P, Lavenu I, Defebvre L, Duhamel A, Lecouffe P, Pasquier F, Steinling M. Alzheimer’s disease and frontotemporal dementia are differentiated by discriminant analysis applied to 99mTc-HMPAO SPECT data. J Neurol Neurosurg Psychiatry 2000;69(5):661–3.CrossRefPubMed
39.
go back to reference Sjogren M, Gustafson L, Wikkelso C, Wallin A. Frontotemporal dementia can be distinguished from Alzheimer’s disease and subcortical white matter dementia by an anterior-to-posterior rCBF-SPET ratio. Dement Geriatr Cogn Disord 2000;11(5):275–85.CrossRefPubMed Sjogren M, Gustafson L, Wikkelso C, Wallin A. Frontotemporal dementia can be distinguished from Alzheimer’s disease and subcortical white matter dementia by an anterior-to-posterior rCBF-SPET ratio. Dement Geriatr Cogn Disord 2000;11(5):275–85.CrossRefPubMed
Metadata
Title
Diagnosis of Alzheimer’s disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy?
Authors
Takao Kubota
Yo Ushijima
Kei Yamada
Chio Okuyama
Osamu Kizu
Tsunehiko Nishimura
Publication date
01-04-2005
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 4/2005
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-004-1704-9

Other articles of this Issue 4/2005

European Journal of Nuclear Medicine and Molecular Imaging 4/2005 Go to the issue

Letter to the Editor

Reply