Skip to main content
Top
Published in: Journal of Anesthesia 5/2016

01-10-2016 | Original Article

Dexmedetomidine protects against lung ischemia–reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway

Authors: Wei Zhang, Jia-Qiang Zhang, Fan-Min Meng, Fu-Shan Xue

Published in: Journal of Anesthesia | Issue 5/2016

Login to get access

Abstract

Purpose

To evaluate the role of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/hypoxia-inducible factor 1α (HIF-1α) signaling pathway in the protection by dexmedetomidine against lung ischemia–reperfusion injury (IRI) in rats.

Methods

Forty-eight male Sprague–Dawley rats weighing 250–350 g were randomly divided into six groups (n = 8 each group): sham group, IRI group, low-dose dexmedetomidine group (LD group), high-dose dexmedetomidine group (HD group), combined low-dose dexmedetomidine and LY294002 group (LDL group), and combined high-dose dexmedetomidine and LY294002 group (HDL group). A 30-min ischemia was induced by occluding the hilum of the left lung, followed by a 120-min reperfusion by removing occlusion of the hilum. After the left lung was removed, the wet/dry weight ratio (W/D) of the lung tissues was determined. Pathological changes of lung tissues were evaluated by light and electron microscopes and the expression of p-Akt and HIF-1α in the lung tissues was determined by western blotting.

Results

Compared with the sham group, both the W/D ratio and lung injury were significantly increased, the p-Akt expression was down-regulated and HIF-1α expression was up-regulated in the five experimental groups. Compared with the LD and LDL groups, both the W/D ratio and lung injury were decreased, but the expression of p-Akt and HIF-1α was increased in the HD and HDL groups.

Conclusions

Administration of dexmedetomidine before ischemia can provide a protection against lung IRI by re-installing the PI3K/Akt/HIF-1α signaling pathway.
Literature
1.
go back to reference Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D, ISHLT Working Group on Primary Lung Graft Dysfunction. Report of the ISHLT Working Group on primary lung graft dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005;24:1454–9.CrossRefPubMed Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D, ISHLT Working Group on Primary Lung Graft Dysfunction. Report of the ISHLT Working Group on primary lung graft dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005;24:1454–9.CrossRefPubMed
2.
go back to reference Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269–77.CrossRefPubMed Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269–77.CrossRefPubMed
3.
go back to reference Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia–reperfusion injury. Ann Thorac Surg. 2006;82:2017–23.CrossRefPubMed Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia–reperfusion injury. Ann Thorac Surg. 2006;82:2017–23.CrossRefPubMed
4.
go back to reference Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J. 1999;138:S69–75.CrossRefPubMed Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J. 1999;138:S69–75.CrossRefPubMed
5.
go back to reference Reino DC, Pisarenko V, Palange D, Doucet D, Bonitz RP, Lu Q, Colorado I, Sheth SU, Chandler B, Kannan KB, Ramanathan M, da Xu Z, Deitch EA, Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One. 2011;6:e14829.CrossRefPubMedPubMedCentral Reino DC, Pisarenko V, Palange D, Doucet D, Bonitz RP, Lu Q, Colorado I, Sheth SU, Chandler B, Kannan KB, Ramanathan M, da Xu Z, Deitch EA, Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One. 2011;6:e14829.CrossRefPubMedPubMedCentral
6.
go back to reference Jiang L, Li L, Shen J, Qi Z, Guo L. Effect of dexmedetomidine on lung ischemia–reperfusion injury. Mol Med Rep. 2014;9:419–26.PubMed Jiang L, Li L, Shen J, Qi Z, Guo L. Effect of dexmedetomidine on lung ischemia–reperfusion injury. Mol Med Rep. 2014;9:419–26.PubMed
7.
go back to reference Xia R, Yin H, Xia ZY, Mao QJ, Chen GD, Xu W. Effect of intravenous infusion of dexmedetomidine combined with inhalation of isoflurane on arterial oxygenation and intrapulmonary shunt during single-lung ventilation. Cell Biochem Biophys. 2013;67:1547–50.CrossRefPubMed Xia R, Yin H, Xia ZY, Mao QJ, Chen GD, Xu W. Effect of intravenous infusion of dexmedetomidine combined with inhalation of isoflurane on arterial oxygenation and intrapulmonary shunt during single-lung ventilation. Cell Biochem Biophys. 2013;67:1547–50.CrossRefPubMed
8.
go back to reference Zhu YM, Wang CC, Chen L, Qian LB, Ma LL, Yu J, Zhu MH, Wen CY, Yu LN, Yan M. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res. 2013;1494:1–8.CrossRefPubMed Zhu YM, Wang CC, Chen L, Qian LB, Ma LL, Yu J, Zhu MH, Wen CY, Yu LN, Yan M. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res. 2013;1494:1–8.CrossRefPubMed
9.
go back to reference Gu J, Sun P, Zhao H, Watts HR, Sanders RD, Terrando N, Xia P, Maze M, Ma D. Dexmedetomidine provides renoprotection against ischemia–reperfusion injury in mice. Crit Care. 2011;15:R153.CrossRefPubMedPubMedCentral Gu J, Sun P, Zhao H, Watts HR, Sanders RD, Terrando N, Xia P, Maze M, Ma D. Dexmedetomidine provides renoprotection against ischemia–reperfusion injury in mice. Crit Care. 2011;15:R153.CrossRefPubMedPubMedCentral
10.
go back to reference Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, Saitoh S, Kamioka M, Uekita H, Ohkawara H, Suzuki K, Teramoto T, Maruyama Y, Takeishi Y. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol. 2009;220:706–15.CrossRefPubMed Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, Saitoh S, Kamioka M, Uekita H, Ohkawara H, Suzuki K, Teramoto T, Maruyama Y, Takeishi Y. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol. 2009;220:706–15.CrossRefPubMed
11.
go back to reference Kobayashi N, Mita S, Yoshida K, Honda T, Kobayashi T, Hara K, Nakano S, Tsubokou Y, Matsuoka H. Celiprolol activates eNOS through the PI3K-Akt pathway and inhibits VCAM-1 via NF-κB induced by oxidative stress. Hypertension. 2003;42:1004–13.CrossRefPubMed Kobayashi N, Mita S, Yoshida K, Honda T, Kobayashi T, Hara K, Nakano S, Tsubokou Y, Matsuoka H. Celiprolol activates eNOS through the PI3K-Akt pathway and inhibits VCAM-1 via NF-κB induced by oxidative stress. Hypertension. 2003;42:1004–13.CrossRefPubMed
12.
go back to reference Kozian A, Schilling T, Freden F, Maripuu E, Röcken C, Strang C, Hachenberg T, Hedenstierna G. One-lung ventilation induces hyperfusion and alveolar damage in the ventilated lung: an experimental study. Br J Anaesth. 2008;100:549–59.CrossRefPubMed Kozian A, Schilling T, Freden F, Maripuu E, Röcken C, Strang C, Hachenberg T, Hedenstierna G. One-lung ventilation induces hyperfusion and alveolar damage in the ventilated lung: an experimental study. Br J Anaesth. 2008;100:549–59.CrossRefPubMed
13.
go back to reference Shen J, Fu G, Jiang L, Xu J, Li L, Fu G. Effect of dexmedetomidine pretreatment on lung injury following intestinal ischemia–reperfusion. Exp Ther Med. 2013;6:1359–64.PubMedPubMedCentral Shen J, Fu G, Jiang L, Xu J, Li L, Fu G. Effect of dexmedetomidine pretreatment on lung injury following intestinal ischemia–reperfusion. Exp Ther Med. 2013;6:1359–64.PubMedPubMedCentral
14.
go back to reference Zhang XY, Liu ZM, Wen SH, Li YS, Li Y, Yao X, Huang WQ, Liu KX. Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia–reperfusion in rats. Anesthesiology. 2012;116:1035–46.CrossRefPubMed Zhang XY, Liu ZM, Wen SH, Li YS, Li Y, Yao X, Huang WQ, Liu KX. Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia–reperfusion in rats. Anesthesiology. 2012;116:1035–46.CrossRefPubMed
15.
go back to reference Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol. 2008;4:619–27.CrossRefPubMed Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol. 2008;4:619–27.CrossRefPubMed
16.
go back to reference Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Díaz-Araya G, Lavandero S. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta. 2012;1822:537–45.CrossRefPubMed Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Díaz-Araya G, Lavandero S. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta. 2012;1822:537–45.CrossRefPubMed
17.
go back to reference Freeman KA, Puskas F, Bell MT, Mares JM, Foley LS, Weyant MJ, Cleveland JC Jr, Fullerton DA, Meng X, Herson PS, Reece TB. α2 agonist attenuates ischemic injury in spinal cord neurons. J Surg Res. 2015;95:21–8.CrossRef Freeman KA, Puskas F, Bell MT, Mares JM, Foley LS, Weyant MJ, Cleveland JC Jr, Fullerton DA, Meng X, Herson PS, Reece TB. α2 agonist attenuates ischemic injury in spinal cord neurons. J Surg Res. 2015;95:21–8.CrossRef
18.
go back to reference Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB. Dexmedetomidine, an α2 adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia–reperfusion. J Thorac Cardiovasc Surg. 2014;147:500–6.CrossRefPubMed Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB. Dexmedetomidine, an α2 adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia–reperfusion. J Thorac Cardiovasc Surg. 2014;147:500–6.CrossRefPubMed
19.
go back to reference Yao H, Chi X, Jin Y, Wang Y, Huang P, Wu S, Xia Z, Cai J. Dexmedetomidine inhibits TLR4/NF-κB activation and reduces acute kidney injury after orthotopic autologous liver transplantation in rats. Sci Rep. 2015;5:16849.CrossRefPubMedPubMedCentral Yao H, Chi X, Jin Y, Wang Y, Huang P, Wu S, Xia Z, Cai J. Dexmedetomidine inhibits TLR4/NF-κB activation and reduces acute kidney injury after orthotopic autologous liver transplantation in rats. Sci Rep. 2015;5:16849.CrossRefPubMedPubMedCentral
20.
go back to reference Si Y, Bao H, Han L, Shi H, Zhang Y, Xu L, Liu C, Wang J, Yang X, Vohra A, Ma D. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med. 2013;11:141.CrossRefPubMedPubMedCentral Si Y, Bao H, Han L, Shi H, Zhang Y, Xu L, Liu C, Wang J, Yang X, Vohra A, Ma D. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med. 2013;11:141.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002;277:27975–81.CrossRefPubMed Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002;277:27975–81.CrossRefPubMed
23.
go back to reference Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA 3rd. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res. 2006;98:133–40.CrossRefPubMed Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA 3rd. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res. 2006;98:133–40.CrossRefPubMed
24.
go back to reference Niu TS, Qi GX, Fu P, Sun YX. Protective effects of hypoxia-inducible factor-1α on myocardial ischemia/reperfusion injury in rat and the role of protein kinase C in signal pathway. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;22:101–4.PubMed Niu TS, Qi GX, Fu P, Sun YX. Protective effects of hypoxia-inducible factor-1α on myocardial ischemia/reperfusion injury in rat and the role of protein kinase C in signal pathway. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;22:101–4.PubMed
25.
go back to reference Zhao X, Jin Y, Li H, Wang Z, Zhang W, Feng C. Hypoxia-inducible factor 1α contributes to pulmonary vascular dysfunction in lung ischemia–reperfusion injury. Int J Clin Exp Pathol. 2014;7:3081–8.PubMedPubMedCentral Zhao X, Jin Y, Li H, Wang Z, Zhang W, Feng C. Hypoxia-inducible factor 1α contributes to pulmonary vascular dysfunction in lung ischemia–reperfusion injury. Int J Clin Exp Pathol. 2014;7:3081–8.PubMedPubMedCentral
26.
go back to reference Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–14.CrossRefPubMedPubMedCentral Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–14.CrossRefPubMedPubMedCentral
27.
go back to reference Minhajuddin M, Bijli KM, Fazal F, Sassano A, Nakayama KI, Hay N, Platanias LC, Rahman A. Protein kinase C-δ and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. J Biol Chem. 2009;284:4052–61.CrossRefPubMedPubMedCentral Minhajuddin M, Bijli KM, Fazal F, Sassano A, Nakayama KI, Hay N, Platanias LC, Rahman A. Protein kinase C-δ and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. J Biol Chem. 2009;284:4052–61.CrossRefPubMedPubMedCentral
29.
go back to reference Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14:391–6.PubMedPubMedCentral Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14:391–6.PubMedPubMedCentral
30.
go back to reference Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.CrossRefPubMed Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.CrossRefPubMed
31.
go back to reference Jiao M, Nan KJ. Activation of PI3 kinase/Akt/HIF-1α pathway contributes to hypoxia-induced epithelial–mesenchymal transition and chemoresistance in hepatocellular carcinoma. Int J Oncol. 2012;40:461–8.PubMed Jiao M, Nan KJ. Activation of PI3 kinase/Akt/HIF-1α pathway contributes to hypoxia-induced epithelial–mesenchymal transition and chemoresistance in hepatocellular carcinoma. Int J Oncol. 2012;40:461–8.PubMed
32.
go back to reference Yang CL, Tsai PS, Huang CJ. Effects of dexmedetomidine on regulating pulmonary inflammation in a rat model of ventilator-induced lung injury. Acta Anaesthesiol Taiwan. 2008;46:151–9.CrossRefPubMed Yang CL, Tsai PS, Huang CJ. Effects of dexmedetomidine on regulating pulmonary inflammation in a rat model of ventilator-induced lung injury. Acta Anaesthesiol Taiwan. 2008;46:151–9.CrossRefPubMed
33.
go back to reference Zhang Q, Wu D, Yang Y, Liu T, Liu H. Effects of dexmedetomidine on the protection of hyperoxia-induced lung injury in newborn rats. Int J Clin Exp Pathol. 2015;8:6466–73.PubMedPubMedCentral Zhang Q, Wu D, Yang Y, Liu T, Liu H. Effects of dexmedetomidine on the protection of hyperoxia-induced lung injury in newborn rats. Int J Clin Exp Pathol. 2015;8:6466–73.PubMedPubMedCentral
34.
go back to reference Cui J, Zhao H, Yi B, Zeng J, Lu K, Ma D. Dexmedetomidine attenuates bilirubin-induced lung alveolar epithelial cell death in vitro and in vivo. Crit Care Med. 2015;43:356–68.CrossRef Cui J, Zhao H, Yi B, Zeng J, Lu K, Ma D. Dexmedetomidine attenuates bilirubin-induced lung alveolar epithelial cell death in vitro and in vivo. Crit Care Med. 2015;43:356–68.CrossRef
Metadata
Title
Dexmedetomidine protects against lung ischemia–reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway
Authors
Wei Zhang
Jia-Qiang Zhang
Fan-Min Meng
Fu-Shan Xue
Publication date
01-10-2016
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 5/2016
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-016-2214-1

Other articles of this Issue 5/2016

Journal of Anesthesia 5/2016 Go to the issue