Skip to main content
Top
Published in: Brain Topography 4/2014

01-07-2014 | Review

Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans

Authors: Carles Escera, Sumie Leung, Sabine Grimm

Published in: Brain Topography | Issue 4/2014

Login to get access

Abstract

Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100–200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20–30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding—rather than on refractoriness—occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.
Literature
go back to reference Alain C, Woods DL, Ogawa KH (1994) Brain indices of automatic pattern processing. Neuroreport 6:140–144PubMedCrossRef Alain C, Woods DL, Ogawa KH (1994) Brain indices of automatic pattern processing. Neuroreport 6:140–144PubMedCrossRef
go back to reference Alho K, Grimm S, Mateo-León S, Costa-Faidella J, Escera C (2012) Early processing of pitch in the human auditory system. Eur J Neurosci 36:2972–2978PubMedCrossRef Alho K, Grimm S, Mateo-León S, Costa-Faidella J, Escera C (2012) Early processing of pitch in the human auditory system. Eur J Neurosci 36:2972–2978PubMedCrossRef
go back to reference Althen H, Grimm S, Escera C (2013) Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. Eur J Neurosci. doi:10.1111/ejn.12346 Althen H, Grimm S, Escera C (2013) Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. Eur J Neurosci. doi:10.​1111/​ejn.​12346
go back to reference Anderson LA, Malmierca MS (2013) The effect of auditory cortical deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62PubMedCrossRef Anderson LA, Malmierca MS (2013) The effect of auditory cortical deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62PubMedCrossRef
go back to reference Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–17316PubMedCrossRef Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–17316PubMedCrossRef
go back to reference Baldeweg T (2007) ERP repetition effects and mismatch negativity generation: a predictive coding perspective. J Psychophysiol 27:204–213CrossRef Baldeweg T (2007) ERP repetition effects and mismatch negativity generation: a predictive coding perspective. J Psychophysiol 27:204–213CrossRef
go back to reference Bendixen A, Schröger E (2008) Memory trace formation for abstract auditory features and its consequences in different attentional contexts. Biol Psychol 78:231–241PubMedCrossRef Bendixen A, Schröger E (2008) Memory trace formation for abstract auditory features and its consequences in different attentional contexts. Biol Psychol 78:231–241PubMedCrossRef
go back to reference Bendixen A, Roeber U, Schröger E (2007) Regularity extraction and application in dynamic auditory stimulus sequences. J Cogn Neurosci 19:1664–1677PubMedCrossRef Bendixen A, Roeber U, Schröger E (2007) Regularity extraction and application in dynamic auditory stimulus sequences. J Cogn Neurosci 19:1664–1677PubMedCrossRef
go back to reference Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41:1111–1119PubMedCrossRef Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41:1111–1119PubMedCrossRef
go back to reference Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131PubMedCrossRef Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131PubMedCrossRef
go back to reference Borgmann C, Ross B, Draganova R, Pantev C (2001) Human auditory middle latency responses: influence of stimulus type and intensity. Hear Res 158:57–64PubMedCrossRef Borgmann C, Ross B, Draganova R, Pantev C (2001) Human auditory middle latency responses: influence of stimulus type and intensity. Hear Res 158:57–64PubMedCrossRef
go back to reference Cacciaglia R, Slabu L, Sanjuán A, Grimm S, Ventura-Campos N, Ávila C, Escera C (2013) Auditory deviance detection along the ascending auditory pathway: direct evidence from functional magnetic resonance imaging. 19th annual meeting of the organization for human brain mapping, abstract 3926 Cacciaglia R, Slabu L, Sanjuán A, Grimm S, Ventura-Campos N, Ávila C, Escera C (2013) Auditory deviance detection along the ascending auditory pathway: direct evidence from functional magnetic resonance imaging. 19th annual meeting of the organization for human brain mapping, abstract 3926
go back to reference Cornella M, Leung S, Grimm S, Escera C (2012) Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 7:e43604PubMedCentralPubMedCrossRef Cornella M, Leung S, Grimm S, Escera C (2012) Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 7:e43604PubMedCentralPubMedCrossRef
go back to reference Cornella M, Leung S, Grimm S, Escera C (2013) Regularity encoding and deviance detection of frequency modulated sweeps: human middle- and long-latency auditory evoked potentials. Psychophysiology. doi:10.1111/psyp.12137 PubMed Cornella M, Leung S, Grimm S, Escera C (2013) Regularity encoding and deviance detection of frequency modulated sweeps: human middle- and long-latency auditory evoked potentials. Psychophysiology. doi:10.​1111/​psyp.​12137 PubMed
go back to reference Costa-Faidella J, Baldeweg T, Grimm S, Escera C (2011a) Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. J Neurosci 31:18590–18597PubMedCrossRef Costa-Faidella J, Baldeweg T, Grimm S, Escera C (2011a) Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. J Neurosci 31:18590–18597PubMedCrossRef
go back to reference Costa-Faidella J, Grimm S, Slabu L, Díaz-Santaella F, Escera C (2011b) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48:774–783PubMedCrossRef Costa-Faidella J, Grimm S, Slabu L, Díaz-Santaella F, Escera C (2011b) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48:774–783PubMedCrossRef
go back to reference Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol Hum Percept Perform 19:909–921 Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol Hum Percept Perform 19:909–921
go back to reference Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21:188–203CrossRef Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21:188–203CrossRef
go back to reference Deouell LY, Parnes A, Pickard N, Knight RT (2006) Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. Eur J Neurosci 24:1488–1494PubMedCrossRef Deouell LY, Parnes A, Pickard N, Knight RT (2006) Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. Eur J Neurosci 24:1488–1494PubMedCrossRef
go back to reference Domínguez-Borràs J, Garcia-Garcia M, Escera C (2008) Emotional context enhances auditory novelty processing: behavioural and electrophysiological evidence. Eur J Neurosci 28:1199–1206PubMedCrossRef Domínguez-Borràs J, Garcia-Garcia M, Escera C (2008) Emotional context enhances auditory novelty processing: behavioural and electrophysiological evidence. Eur J Neurosci 28:1199–1206PubMedCrossRef
go back to reference Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency and level dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32:17762–17774PubMedCrossRef Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency and level dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32:17762–17774PubMedCrossRef
go back to reference Escera C, Corral MJ (2007) Role of mismatch negativity and novelty-P3 in involuntary auditory attention. J Psychophysiol 21:251–264CrossRef Escera C, Corral MJ (2007) Role of mismatch negativity and novelty-P3 in involuntary auditory attention. J Psychophysiol 21:251–264CrossRef
go back to reference Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604PubMedCrossRef Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604PubMedCrossRef
go back to reference Escera C, Alho K, Schröger E, Winkler I (2000a) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166PubMedCrossRef Escera C, Alho K, Schröger E, Winkler I (2000a) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166PubMedCrossRef
go back to reference Escera C, Yago E, Polo MD, Grau C (2000b) The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin Neurophysiol 111:546–551PubMedCrossRef Escera C, Yago E, Polo MD, Grau C (2000b) The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin Neurophysiol 111:546–551PubMedCrossRef
go back to reference Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14:877–883PubMedCrossRef Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14:877–883PubMedCrossRef
go back to reference Escera C, Yago E, Corral MJ, Corbera S, Nuñez MI (2003) Attention capture by auditory significant stimuli: semantic analysis follows attention switching. Eur J Neurosci 18:2408–2412PubMedCrossRef Escera C, Yago E, Corral MJ, Corbera S, Nuñez MI (2003) Attention capture by auditory significant stimuli: semantic analysis follows attention switching. Eur J Neurosci 18:2408–2412PubMedCrossRef
go back to reference Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRef Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRef
go back to reference Gomes H, Bernstein R, Ritter W, Vaughan HG Jr, Miller J (1997) Storage of feature conjunctions in transient auditory memory. Psychophysiology 34:712–716PubMedCrossRef Gomes H, Bernstein R, Ritter W, Vaughan HG Jr, Miller J (1997) Storage of feature conjunctions in transient auditory memory. Psychophysiology 34:712–716PubMedCrossRef
go back to reference Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85:88–92PubMedCrossRef Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85:88–92PubMedCrossRef
go back to reference Grimm S, Escera C, Slabu LM, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48:377–384PubMedCrossRef Grimm S, Escera C, Slabu LM, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48:377–384PubMedCrossRef
go back to reference Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89:232–239PubMedCrossRef Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89:232–239PubMedCrossRef
go back to reference Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25:10494–10501PubMedCrossRef Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25:10494–10501PubMedCrossRef
go back to reference Jääskeläinen IP, Ahveninen J, Bonmassar G et al (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 17:6809–6814CrossRef Jääskeläinen IP, Ahveninen J, Bonmassar G et al (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 17:6809–6814CrossRef
go back to reference Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727PubMedCrossRef Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727PubMedCrossRef
go back to reference Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114:1133–1143PubMedCrossRef Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114:1133–1143PubMedCrossRef
go back to reference Jacobsen T, Horenkamp T, Schröger E (2003) Preattentive memory-based comparison of sound intensity. Audiol Neurootol 8:338–346PubMedCrossRef Jacobsen T, Horenkamp T, Schröger E (2003) Preattentive memory-based comparison of sound intensity. Audiol Neurootol 8:338–346PubMedCrossRef
go back to reference King C, Mcgee T, Rubel EW, Nicol T, Kraus N (1995) Acoustic features and acoustic changes are represented by different central pathways. Hear Res 85:45–52PubMedCrossRef King C, Mcgee T, Rubel EW, Nicol T, Kraus N (1995) Acoustic features and acoustic changes are represented by different central pathways. Hear Res 85:45–52PubMedCrossRef
go back to reference Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259PubMedCrossRef Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259PubMedCrossRef
go back to reference Kraus N, McGee T, Littman T, Nicol T, King C (1994a) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277PubMed Kraus N, McGee T, Littman T, Nicol T, King C (1994a) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277PubMed
go back to reference Kraus N et al (1994b) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96:2758–2768PubMedCrossRef Kraus N et al (1994b) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96:2758–2768PubMedCrossRef
go back to reference Leung S, Cornella M, Grimm S, Escera C (2012) Is fast auditory change detection feature-specific? An electrophysiological study in humans. Psychophysiology 49:933–942PubMedCrossRef Leung S, Cornella M, Grimm S, Escera C (2012) Is fast auditory change detection feature-specific? An electrophysiological study in humans. Psychophysiology 49:933–942PubMedCrossRef
go back to reference Makeig S (1990) A dramatic increase in the auditory middle latency response at very slow rates. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. University Press, Tilburg, pp 60–64 Makeig S (1990) A dramatic increase in the auditory middle latency response at very slow rates. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. University Press, Tilburg, pp 60–64
go back to reference Mäkelä JP, Salmelin R, Kotila M, Salonen O, Laaksonen R, Hokkanen L, Hari R (1998) Modification of neuromagnetic cortical signals by thalamic infarctions. Electroencephalogr Clin Neurophysiol 106:433–443PubMedCrossRef Mäkelä JP, Salmelin R, Kotila M, Salonen O, Laaksonen R, Hokkanen L, Hari R (1998) Modification of neuromagnetic cortical signals by thalamic infarctions. Electroencephalogr Clin Neurophysiol 106:433–443PubMedCrossRef
go back to reference Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493PubMedCentralPubMedCrossRef Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493PubMedCentralPubMedCrossRef
go back to reference Martínez-Moreno E, Llamas A, Avendaño C, Renes E, Reinoso-Suárez F (1987) General plan of the thalamic projections to the prefrontal cortex in the cat. Brain Res 07:17–26CrossRef Martínez-Moreno E, Llamas A, Avendaño C, Renes E, Reinoso-Suárez F (1987) General plan of the thalamic projections to the prefrontal cortex in the cat. Brain Res 07:17–26CrossRef
go back to reference May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122PubMedCrossRef May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122PubMedCrossRef
go back to reference Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288CrossRef Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288CrossRef
go back to reference Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, Hillsdale Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, Hillsdale
go back to reference Näätänen R, Escera C (2000) Mismatch negativity (MMN): clinical and other applications. Audiol Neurootol 5:105–110PubMedCrossRef Näätänen R, Escera C (2000) Mismatch negativity (MMN): clinical and other applications. Audiol Neurootol 5:105–110PubMedCrossRef
go back to reference Näätänen R, Michie P (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136PubMedCrossRef Näätänen R, Michie P (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136PubMedCrossRef
go back to reference Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRef Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRef
go back to reference Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144PubMedCrossRef Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144PubMedCrossRef
go back to reference Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590PubMedCrossRef Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590PubMedCrossRef
go back to reference Näätänen R, Kujala T, Kreegippu K, Carlson S, Escera C, Baldeweg T, Curtis P (2011) The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in aging. Brain 134:3432–3450CrossRef Näätänen R, Kujala T, Kreegippu K, Carlson S, Escera C, Baldeweg T, Curtis P (2011) The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in aging. Brain 134:3432–3450CrossRef
go back to reference Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in aging and different clinical conditions. Clin Neurophysiol 123:424–458PubMedCrossRef Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in aging and different clinical conditions. Clin Neurophysiol 123:424–458PubMedCrossRef
go back to reference Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223CrossRef Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223CrossRef
go back to reference Nunez PL, Srinivasan R (2006) Electric fields of the brain. Oxford University Press, OxfordCrossRef Nunez PL, Srinivasan R (2006) Electric fields of the brain. Oxford University Press, OxfordCrossRef
go back to reference Paavilainen P (2013) The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol 88:109–123PubMedCrossRef Paavilainen P (2013) The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol 88:109–123PubMedCrossRef
go back to reference Pérez-González D, Covey E, Malmierca MS (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885PubMedCrossRef Pérez-González D, Covey E, Malmierca MS (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885PubMedCrossRef
go back to reference Pérez-González D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7:e34297PubMedCentralPubMedCrossRef Pérez-González D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7:e34297PubMedCentralPubMedCrossRef
go back to reference Picton TW (2010) Human auditory evoked potentials. Plural Publishing, San Diego Picton TW (2010) Human auditory evoked potentials. Plural Publishing, San Diego
go back to reference Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I: evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190PubMedCrossRef Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I: evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190PubMedCrossRef
go back to reference Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139PubMedCrossRef Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139PubMedCrossRef
go back to reference Puschmann S, Sandmann P, Ahrens J, Thorne J, Weerda R, Klump G, Debener S, Thiel CM (2013) Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage 75:155–164PubMedCrossRef Puschmann S, Sandmann P, Ahrens J, Thorne J, Weerda R, Klump G, Debener S, Thiel CM (2013) Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage 75:155–164PubMedCrossRef
go back to reference Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.1093/cercor/bhs295 PubMed Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.​1093/​cercor/​bhs295 PubMed
go back to reference Recasens M, Grimm S, Leung S, Wollbrink A, Pantev C, Escera C (2013) Pitches & patterns: distinct encoding mechanisms for different acoustic regularity levels. 19th annual meeting of the organization for human brain mapping, abstract 3940 Recasens M, Grimm S, Leung S, Wollbrink A, Pantev C, Escera C (2013) Pitches & patterns: distinct encoding mechanisms for different acoustic regularity levels. 19th annual meeting of the organization for human brain mapping, abstract 3940
go back to reference Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19PubMedCrossRef Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19PubMedCrossRef
go back to reference Ruhnau P, Herrmann B, Schröger E (2012) Finding the right control: the mismatch negativity under investigation. Clin Neurophysiol 123:507–512PubMedCrossRef Ruhnau P, Herrmann B, Schröger E (2012) Finding the right control: the mismatch negativity under investigation. Clin Neurophysiol 123:507–512PubMedCrossRef
go back to reference Ruusuvirta T, Penttonen M, Korhonen T (1998) Auditory cortical event-related potentials to pitch deviances in rats. Neurosci Lett 248:45–48PubMedCrossRef Ruusuvirta T, Penttonen M, Korhonen T (1998) Auditory cortical event-related potentials to pitch deviances in rats. Neurosci Lett 248:45–48PubMedCrossRef
go back to reference SanMiguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci 20:1131–1145PubMedCrossRef SanMiguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci 20:1131–1145PubMedCrossRef
go back to reference Schröger E (1996) Neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cogn Neurosci 8:527–539PubMedCrossRef Schröger E (1996) Neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cogn Neurosci 8:527–539PubMedCrossRef
go back to reference Schröger E, Wolff C (1996) Mismatch response to changes in sound location. Neuroreport 7:3005–3008PubMedCrossRef Schröger E, Wolff C (1996) Mismatch response to changes in sound location. Neuroreport 7:3005–3008PubMedCrossRef
go back to reference Schröger E, Wolff C (1998) Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cogn Brain Res 7:71–87CrossRef Schröger E, Wolff C (1998) Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cogn Brain Res 7:71–87CrossRef
go back to reference Slabu LM, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32:859–865PubMedCrossRef Slabu LM, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32:859–865PubMedCrossRef
go back to reference Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32:1447–1452PubMedCrossRef Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32:1447–1452PubMedCrossRef
go back to reference Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799PubMedCrossRef Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799PubMedCrossRef
go back to reference Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076:187–192PubMedCrossRef Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076:187–192PubMedCrossRef
go back to reference Stochard JJ, Stochard EJ, Sharbrough FW (1979) Brain-steam auditory-evoked responses. Arch Neurol 36:597–598 Stochard JJ, Stochard EJ, Sharbrough FW (1979) Brain-steam auditory-evoked responses. Arch Neurol 36:597–598
go back to reference Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18PubMedCrossRef Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18PubMedCrossRef
go back to reference Thornton C, Heneghan CP, James MF, Jones JG (1984) Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br J Anaesth 56:315–323PubMedCrossRef Thornton C, Heneghan CP, James MF, Jones JG (1984) Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br J Anaesth 56:315–323PubMedCrossRef
go back to reference Tse CY, Penney TB (2008) On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage 41:1462–1470PubMedCrossRef Tse CY, Penney TB (2008) On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage 41:1462–1470PubMedCrossRef
go back to reference Ulanovsky N, La L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398PubMedCrossRef Ulanovsky N, La L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398PubMedCrossRef
go back to reference Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453PubMedCrossRef Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453PubMedCrossRef
go back to reference Widmann A, Kujala T, Tervaniem M, Kujala A, Schröger E (2004) From symbols to sounds: visual symbolic information activates sound representations. Psychophysiology 41:709–715PubMedCrossRef Widmann A, Kujala T, Tervaniem M, Kujala A, Schröger E (2004) From symbols to sounds: visual symbolic information activates sound representations. Psychophysiology 41:709–715PubMedCrossRef
go back to reference Winkler I (1993) Mismatch negativity: an event-related brain potential measure of auditory sensory memory traces. Doctor of philosophy thesis, University of Helsinki, Helsinki Winkler I (1993) Mismatch negativity: an event-related brain potential measure of auditory sensory memory traces. Doctor of philosophy thesis, University of Helsinki, Helsinki
go back to reference Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532–540PubMedCrossRef Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532–540PubMedCrossRef
go back to reference Woods DL, Alain C, Covarrubias D, Zaidel O (1995) Middle latency auditory evoked potentials to tones of different frequency. Hear Res 85:69–75PubMedCrossRef Woods DL, Alain C, Covarrubias D, Zaidel O (1995) Middle latency auditory evoked potentials to tones of different frequency. Hear Res 85:69–75PubMedCrossRef
go back to reference Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12:2583–2587PubMedCrossRef Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12:2583–2587PubMedCrossRef
go back to reference Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423PubMedCrossRef Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423PubMedCrossRef
go back to reference Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153PubMedCrossRef Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153PubMedCrossRef
Metadata
Title
Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans
Authors
Carles Escera
Sumie Leung
Sabine Grimm
Publication date
01-07-2014
Publisher
Springer US
Published in
Brain Topography / Issue 4/2014
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-013-0328-4

Other articles of this Issue 4/2014

Brain Topography 4/2014 Go to the issue