Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 3/2018

01-06-2018 | Original Article

Development of an Off-the-Shelf Tissue-Engineered Sinus Valve for Transcatheter Pulmonary Valve Replacement: a Proof-of-Concept Study

Authors: Sarah E. Motta, Emanuela S. Fioretta, Petra E. Dijkman, Valentina Lintas, Luc Behr, Simon P. Hoerstrup, Maximilian Y. Emmert

Published in: Journal of Cardiovascular Translational Research | Issue 3/2018

Login to get access

Abstract

Tissue-engineered heart valves with self-repair and regeneration properties may overcome the problem of long-term degeneration of currently used artificial prostheses. The aim of this study was the development and in vivo proof-of-concept of next-generation off-the-shelf tissue-engineered sinus valve (TESV) for transcatheter pulmonary valve replacement (TPVR). Transcatheter implantation of off-the-shelf TESVs was performed in a translational sheep model for up to 16 weeks. Transapical delivery of TESVs was successful and showed good acute and short-term performance (up to 8 weeks), which then worsened over time most likely due to a non-optimized in vitro valve design. Post-mortem analyses confirmed the remodelling potential of the TESVs, with host cell infiltration, polymer degradation, and collagen and elastin deposition. TESVs proved to be suitable as TPVR in a preclinical model, with encouraging short-term performance and remodelling potential. Future studies will enhance the clinical translation of such approach by improving the valve design to ensure long-term functionality.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kenny, D. P., & Hijazi, Z. M. (2017). Current status and future potential of transcatheter interventions in congenital heart disease. Circulation Research, 120, 1015–1026.CrossRefPubMed Kenny, D. P., & Hijazi, Z. M. (2017). Current status and future potential of transcatheter interventions in congenital heart disease. Circulation Research, 120, 1015–1026.CrossRefPubMed
3.
go back to reference Emmert, M. Y., & Hoerstrup, S. P. (2016). Tissue engineered heart valves: Moving towards clinical translation. Expert Review of Medical Devices, 13, 417–419.CrossRefPubMed Emmert, M. Y., & Hoerstrup, S. P. (2016). Tissue engineered heart valves: Moving towards clinical translation. Expert Review of Medical Devices, 13, 417–419.CrossRefPubMed
4.
go back to reference Driessen-Mol, A., Emmert, M. Y., Dijkman, P. E., Frese, L., Sanders, B., Weber, B., Cesarovic, N., Sidler, M., Leenders, J., Jenni, R., Grunenfelder, J., Falk, V., Baaijens, F. P., & Hoerstrup, S. P. (2014). Transcatheter implantation of homologous "off-the-shelf" tissue-engineered heart valves with self-repair capacity: Long-term functionality and rapid in vivo remodeling in sheep. Journal of the American College of Cardiology, 63, 1320–1329.CrossRefPubMed Driessen-Mol, A., Emmert, M. Y., Dijkman, P. E., Frese, L., Sanders, B., Weber, B., Cesarovic, N., Sidler, M., Leenders, J., Jenni, R., Grunenfelder, J., Falk, V., Baaijens, F. P., & Hoerstrup, S. P. (2014). Transcatheter implantation of homologous "off-the-shelf" tissue-engineered heart valves with self-repair capacity: Long-term functionality and rapid in vivo remodeling in sheep. Journal of the American College of Cardiology, 63, 1320–1329.CrossRefPubMed
5.
go back to reference Schmitt, B., Spriestersbach, H., O.H.I, D., Radtke, T., Bartosch, M., Peters, H., Sigler, M., Frese, L., Dijkman, P. E., Baaijens, F. P., Hoerstrup, S. P., & Berger, F. (2016). Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: Six-month in vivo functionality and matrix remodelling in sheep. EuroIntervention, 12, 62–70.CrossRefPubMed Schmitt, B., Spriestersbach, H., O.H.I, D., Radtke, T., Bartosch, M., Peters, H., Sigler, M., Frese, L., Dijkman, P. E., Baaijens, F. P., Hoerstrup, S. P., & Berger, F. (2016). Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: Six-month in vivo functionality and matrix remodelling in sheep. EuroIntervention, 12, 62–70.CrossRefPubMed
6.
go back to reference Kluin, J., Talacua, H., Smits, A. I., Emmert, M. Y., Brugmans, M. C., Fioretta, E. S., Dijkman, P. E., Sontjens, S. H., Duijvelshoff, R., Dekker, S., Janssen-van den Broek, M. W., Lintas, V., Vink, A., Hoerstrup, S. P., Janssen, H. M., Dankers, P. Y., Baaijens, F. P., & Bouten, C. V. (2017). In situ heart valve tissue engineering using a bioresorbable elastomeric implant - from material design to 12 months follow-up in sheep. Biomaterials, 125, 101–117.CrossRefPubMed Kluin, J., Talacua, H., Smits, A. I., Emmert, M. Y., Brugmans, M. C., Fioretta, E. S., Dijkman, P. E., Sontjens, S. H., Duijvelshoff, R., Dekker, S., Janssen-van den Broek, M. W., Lintas, V., Vink, A., Hoerstrup, S. P., Janssen, H. M., Dankers, P. Y., Baaijens, F. P., & Bouten, C. V. (2017). In situ heart valve tissue engineering using a bioresorbable elastomeric implant - from material design to 12 months follow-up in sheep. Biomaterials, 125, 101–117.CrossRefPubMed
7.
go back to reference Emmert, M. Y., Weber, B., Behr, L., Frauenfelder, T., Brokopp, C. E., Grunenfelder, J., Falk, V., & Hoerstrup, S. P. (2011). Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: First experiences in the systemic circulation. JACC. Cardiovascular Interventions, 4, 822–823.CrossRefPubMed Emmert, M. Y., Weber, B., Behr, L., Frauenfelder, T., Brokopp, C. E., Grunenfelder, J., Falk, V., & Hoerstrup, S. P. (2011). Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: First experiences in the systemic circulation. JACC. Cardiovascular Interventions, 4, 822–823.CrossRefPubMed
8.
go back to reference Syedain, Z., Reimer, J., Schmidt, J., Lahti, M., Berry, J., Bianco, R., & Tranquillo, R. T. (2015). 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials, 73, 175–184.CrossRefPubMedPubMedCentral Syedain, Z., Reimer, J., Schmidt, J., Lahti, M., Berry, J., Bianco, R., & Tranquillo, R. T. (2015). 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials, 73, 175–184.CrossRefPubMedPubMedCentral
9.
go back to reference Weber, B., Dijkman, P. E., Scherman, J., Sanders, B., Emmert, M. Y., Grunenfelder, J., Verbeek, R., Bracher, M., Black, M., Franz, T., Kortsmit, J., Modregger, P., Peter, S., Stampanoni, M., Robert, J., Kehl, D., van Doeselaar, M., Schweiger, M., Brokopp, C. E., Walchli, T., Falk, V., Zilla, P., Driessen-Mol, A., Baaijens, F. P., & Hoerstrup, S. P. (2013). Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials, 34, 7269–7280.CrossRefPubMed Weber, B., Dijkman, P. E., Scherman, J., Sanders, B., Emmert, M. Y., Grunenfelder, J., Verbeek, R., Bracher, M., Black, M., Franz, T., Kortsmit, J., Modregger, P., Peter, S., Stampanoni, M., Robert, J., Kehl, D., van Doeselaar, M., Schweiger, M., Brokopp, C. E., Walchli, T., Falk, V., Zilla, P., Driessen-Mol, A., Baaijens, F. P., & Hoerstrup, S. P. (2013). Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials, 34, 7269–7280.CrossRefPubMed
10.
go back to reference Katayama, S., Umetani, N., Sugiura, S., & Hisada, T. (2008). The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. The Journal of Thoracic and Cardiovascular Surgery, 136, 1528–35e1.CrossRefPubMed Katayama, S., Umetani, N., Sugiura, S., & Hisada, T. (2008). The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. The Journal of Thoracic and Cardiovascular Surgery, 136, 1528–35e1.CrossRefPubMed
11.
go back to reference Salica, A., Pisani, G., Morbiducci, U., Scaffa, R., Massai, D., Audenino, A., Weltert, L., Guerrieri Wolf, L., & De Paulis, R. (2016). The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve. European Journal of Cardio-Thoracic Surgery, 49, 1222–1227.CrossRefPubMed Salica, A., Pisani, G., Morbiducci, U., Scaffa, R., Massai, D., Audenino, A., Weltert, L., Guerrieri Wolf, L., & De Paulis, R. (2016). The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve. European Journal of Cardio-Thoracic Surgery, 49, 1222–1227.CrossRefPubMed
12.
go back to reference Pisani, G., Scaffa, R., Ieropoli, O., Dell'Amico, E. M., Maselli, D., Morbiducci, U., & De Paulis, R. (2013). Role of the sinuses of Valsalva on the opening of the aortic valve. The Journal of Thoracic and Cardiovascular Surgery, 145, 999–1003.CrossRefPubMed Pisani, G., Scaffa, R., Ieropoli, O., Dell'Amico, E. M., Maselli, D., Morbiducci, U., & De Paulis, R. (2013). Role of the sinuses of Valsalva on the opening of the aortic valve. The Journal of Thoracic and Cardiovascular Surgery, 145, 999–1003.CrossRefPubMed
13.
go back to reference Loerakker, S., Ristori, T., & Baaijens, F. P. (2016). A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. Journal of the Mechanical Behavior of Biomedical Materials, 58, 173–187.CrossRefPubMed Loerakker, S., Ristori, T., & Baaijens, F. P. (2016). A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. Journal of the Mechanical Behavior of Biomedical Materials, 58, 173–187.CrossRefPubMed
14.
go back to reference Sanders, B., Loerakker, S., Fioretta, E. S., Bax, D. J. P., Driessen-Mol, A., Hoerstrup, S. P., & Baaijens, F. P. T. (2016). Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Annals of Biomedical Engineering, 44, 1061–1071.CrossRefPubMed Sanders, B., Loerakker, S., Fioretta, E. S., Bax, D. J. P., Driessen-Mol, A., Hoerstrup, S. P., & Baaijens, F. P. T. (2016). Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Annals of Biomedical Engineering, 44, 1061–1071.CrossRefPubMed
15.
go back to reference Dijkman, P. E., Driessen-Mol, A., Frese, L., Hoerstrup, S. P., & Baaijens, F. P. (2012). Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials, 33, 4545–4554.CrossRefPubMed Dijkman, P. E., Driessen-Mol, A., Frese, L., Hoerstrup, S. P., & Baaijens, F. P. (2012). Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials, 33, 4545–4554.CrossRefPubMed
16.
go back to reference Mol, A., Driessen, N. J., Rutten, M. C., Hoerstrup, S. P., Bouten, C. V., & Baaijens, F. P. (2005). Tissue engineering of human heart valve leaflets: A novel bioreactor for a strain-based conditioning approach. Annals of Biomedical Engineering, 33, 1778–1788.CrossRefPubMed Mol, A., Driessen, N. J., Rutten, M. C., Hoerstrup, S. P., Bouten, C. V., & Baaijens, F. P. (2005). Tissue engineering of human heart valve leaflets: A novel bioreactor for a strain-based conditioning approach. Annals of Biomedical Engineering, 33, 1778–1788.CrossRefPubMed
17.
go back to reference Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P., & Bouten, C. V. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26, 3113–3121.CrossRefPubMed Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P., & Bouten, C. V. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26, 3113–3121.CrossRefPubMed
18.
go back to reference Benes, P., Maceckova, V., Zdrahal, Z., Konecna, H., Zahradnickova, E., Muzik, J., & Smarda, J. (2006). Role of vimentin in regulation of monocyte/macrophage differentiation. Differentiation, 74, 265–276.CrossRefPubMed Benes, P., Maceckova, V., Zdrahal, Z., Konecna, H., Zahradnickova, E., Muzik, J., & Smarda, J. (2006). Role of vimentin in regulation of monocyte/macrophage differentiation. Differentiation, 74, 265–276.CrossRefPubMed
19.
go back to reference Mor-Vaknin, N., Punturieri, A., Sitwala, K., & Markovitz, D. M. (2003). Vimentin is secreted by activated macrophages. Nature Cell Biology, 5, 59–63.CrossRefPubMed Mor-Vaknin, N., Punturieri, A., Sitwala, K., & Markovitz, D. M. (2003). Vimentin is secreted by activated macrophages. Nature Cell Biology, 5, 59–63.CrossRefPubMed
21.
go back to reference Loerakker, S., Argento, G., Oomens, C. W., & Baaijens, F. P. (2013). Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. Journal of Biomechanics, 46, 1792–1800.CrossRefPubMed Loerakker, S., Argento, G., Oomens, C. W., & Baaijens, F. P. (2013). Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. Journal of Biomechanics, 46, 1792–1800.CrossRefPubMed
22.
go back to reference Toninato, R., Salmon, J., Susin, F. M., Ducci, A., & Burriesci, G. (2016). Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves. Journal of Biomechanics, 49, 2635–2643.CrossRefPubMedPubMedCentral Toninato, R., Salmon, J., Susin, F. M., Ducci, A., & Burriesci, G. (2016). Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves. Journal of Biomechanics, 49, 2635–2643.CrossRefPubMedPubMedCentral
23.
go back to reference Bellhouse, B. J., & Bellhouse, F. H. (1968). Mechanism of closure of the aortic valve. Nature, 217, 86–87.CrossRefPubMed Bellhouse, B. J., & Bellhouse, F. H. (1968). Mechanism of closure of the aortic valve. Nature, 217, 86–87.CrossRefPubMed
24.
go back to reference Markl, M., Kilner, P. J., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13, 7.CrossRefPubMedPubMedCentral Markl, M., Kilner, P. J., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13, 7.CrossRefPubMedPubMedCentral
25.
go back to reference Kvitting, J. P., Ebbers, T., Wigstrom, L., Engvall, J., Olin, C. L., & Bolger, A. F. (2004). Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: Implications for aortic valve-sparing surgery. The Journal of Thoracic and Cardiovascular Surgery, 127, 1602–1607.CrossRefPubMed Kvitting, J. P., Ebbers, T., Wigstrom, L., Engvall, J., Olin, C. L., & Bolger, A. F. (2004). Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: Implications for aortic valve-sparing surgery. The Journal of Thoracic and Cardiovascular Surgery, 127, 1602–1607.CrossRefPubMed
26.
go back to reference Ranga, A., Bouchot, O., Mongrain, R., Ugolini, P., & Cartier, R. (2006). Computational simulations of the aortic valve validated by imaging data: Evaluation of valve-sparing techniques. Interactive Cardiovascular and Thoracic Surgery, 5, 373–378.CrossRefPubMed Ranga, A., Bouchot, O., Mongrain, R., Ugolini, P., & Cartier, R. (2006). Computational simulations of the aortic valve validated by imaging data: Evaluation of valve-sparing techniques. Interactive Cardiovascular and Thoracic Surgery, 5, 373–378.CrossRefPubMed
27.
go back to reference Leo, H. L., Simon, H., Carberry, J., Lee, S. C., & Yoganathan, A. P. (2005). A comparison of flow field structures of two tri-leaflet polymeric heart valves. Annals of Biomedical Engineering, 33, 429–443.CrossRefPubMed Leo, H. L., Simon, H., Carberry, J., Lee, S. C., & Yoganathan, A. P. (2005). A comparison of flow field structures of two tri-leaflet polymeric heart valves. Annals of Biomedical Engineering, 33, 429–443.CrossRefPubMed
28.
go back to reference Saikrishnan, N., Yap, C. H., Milligan, N. C., Vasilyev, N. V., & Yoganathan, A. P. (2012). In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Annals of Biomedical Engineering, 40, 1760–1775.CrossRefPubMed Saikrishnan, N., Yap, C. H., Milligan, N. C., Vasilyev, N. V., & Yoganathan, A. P. (2012). In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Annals of Biomedical Engineering, 40, 1760–1775.CrossRefPubMed
29.
go back to reference Ducci, A., Tzamtzis, S., Mullen, M. J., & Burriesci, G. (2013). Hemodynamics in the Valsalva sinuses after transcatheter aortic valve implantation (TAVI). The Journal of Heart Valve Disease, 22, 688–696.PubMed Ducci, A., Tzamtzis, S., Mullen, M. J., & Burriesci, G. (2013). Hemodynamics in the Valsalva sinuses after transcatheter aortic valve implantation (TAVI). The Journal of Heart Valve Disease, 22, 688–696.PubMed
30.
go back to reference Suleiman, T., Kavinsky, C. J., Skerritt, C., Kenny, D., Ilbawi, M. N., & Caputo, M. (2015). Recent development in pulmonary valve replacement after tetralogy of Fallot repair: The emergence of hybrid approaches. Frontiers in Surgery, 2, 22.CrossRefPubMedPubMedCentral Suleiman, T., Kavinsky, C. J., Skerritt, C., Kenny, D., Ilbawi, M. N., & Caputo, M. (2015). Recent development in pulmonary valve replacement after tetralogy of Fallot repair: The emergence of hybrid approaches. Frontiers in Surgery, 2, 22.CrossRefPubMedPubMedCentral
31.
go back to reference Butera, G., Milanesi, O., Spadoni, I., Piazza, L., Donti, A., Ricci, C., Agnoletti, G., Pangrazi, A., Chessa, M., & Carminati, M. (2013). Melody transcatheter pulmonary valve implantation. Results from the registry of the Italian Society of Pediatric Cardiology. Catheterization and Cardiovascular Interventions, 81, 310–316.CrossRefPubMed Butera, G., Milanesi, O., Spadoni, I., Piazza, L., Donti, A., Ricci, C., Agnoletti, G., Pangrazi, A., Chessa, M., & Carminati, M. (2013). Melody transcatheter pulmonary valve implantation. Results from the registry of the Italian Society of Pediatric Cardiology. Catheterization and Cardiovascular Interventions, 81, 310–316.CrossRefPubMed
32.
go back to reference Cheatham, J. P., Hellenbrand, W. E., Zahn, E. M., Jones, T. K., Berman, D. P., Vincent, J. A., & McElhinney, D. B. (2015). Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation, 131, 1960–1970.CrossRefPubMed Cheatham, J. P., Hellenbrand, W. E., Zahn, E. M., Jones, T. K., Berman, D. P., Vincent, J. A., & McElhinney, D. B. (2015). Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation, 131, 1960–1970.CrossRefPubMed
33.
go back to reference McElhinney, D. B., Hellenbrand, W. E., Zahn, E. M., Jones, T. K., Cheatham, J. P., Lock, J. E., & Vincent, J. A. (2010). Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation, 122, 507–516.CrossRefPubMedPubMedCentral McElhinney, D. B., Hellenbrand, W. E., Zahn, E. M., Jones, T. K., Cheatham, J. P., Lock, J. E., & Vincent, J. A. (2010). Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation, 122, 507–516.CrossRefPubMedPubMedCentral
34.
go back to reference Eicken, A., Ewert, P., Hager, A., Peters, B., Fratz, S., Kuehne, T., Busch, R., Hess, J., & Berger, F. (2011). Percutaneous pulmonary valve implantation: Two-centre experience with more than 100 patients. European Heart Journal, 32, 1260–1265.CrossRefPubMed Eicken, A., Ewert, P., Hager, A., Peters, B., Fratz, S., Kuehne, T., Busch, R., Hess, J., & Berger, F. (2011). Percutaneous pulmonary valve implantation: Two-centre experience with more than 100 patients. European Heart Journal, 32, 1260–1265.CrossRefPubMed
35.
go back to reference Van Dijck, I., Budts, W., Cools, B., Eyskens, B., Boshoff, D. E., Heying, R., Frerich, S., Vanagt, W. Y., Troost, E., & Gewillig, M. (2015). Infective endocarditis of a transcatheter pulmonary valve in comparison with surgical implants. Heart, 101, 788–793.CrossRefPubMed Van Dijck, I., Budts, W., Cools, B., Eyskens, B., Boshoff, D. E., Heying, R., Frerich, S., Vanagt, W. Y., Troost, E., & Gewillig, M. (2015). Infective endocarditis of a transcatheter pulmonary valve in comparison with surgical implants. Heart, 101, 788–793.CrossRefPubMed
36.
go back to reference Lee, C., Park, C. S., Lee, C. H., Kwak, J. G., Kim, S. J., Shim, W. S., Song, J. Y., Choi, E. Y., & Lee, S. Y. (2011). Durability of bioprosthetic valves in the pulmonary position: Long-term follow-up of 181 implants in patients with congenital heart disease. The Journal of Thoracic and Cardiovascular Surgery, 142, 351–358.CrossRefPubMed Lee, C., Park, C. S., Lee, C. H., Kwak, J. G., Kim, S. J., Shim, W. S., Song, J. Y., Choi, E. Y., & Lee, S. Y. (2011). Durability of bioprosthetic valves in the pulmonary position: Long-term follow-up of 181 implants in patients with congenital heart disease. The Journal of Thoracic and Cardiovascular Surgery, 142, 351–358.CrossRefPubMed
37.
go back to reference Freling, H. G., van Slooten, Y. J., van Melle, J. P., Ebels, T., Hoendermis, E. S., Berger, R. M., Hillege, H. L., Waterbolk, T. W., van Veldhuisen, D. J., Willems, T. P., & Pieper, P. G. (2015). Pulmonary valve replacement: Twenty-six years of experience with mechanical valvar prostheses. The Annals of Thoracic Surgery, 99, 905–910.CrossRefPubMed Freling, H. G., van Slooten, Y. J., van Melle, J. P., Ebels, T., Hoendermis, E. S., Berger, R. M., Hillege, H. L., Waterbolk, T. W., van Veldhuisen, D. J., Willems, T. P., & Pieper, P. G. (2015). Pulmonary valve replacement: Twenty-six years of experience with mechanical valvar prostheses. The Annals of Thoracic Surgery, 99, 905–910.CrossRefPubMed
38.
go back to reference Miller, D. C. (2003). Valve-sparing aortic root replacement in patients with the Marfan syndrome. The Journal of Thoracic and Cardiovascular Surgery, 125, 773–778.CrossRefPubMed Miller, D. C. (2003). Valve-sparing aortic root replacement in patients with the Marfan syndrome. The Journal of Thoracic and Cardiovascular Surgery, 125, 773–778.CrossRefPubMed
39.
go back to reference Al-Radi, O. O. (2016). Aortic ring autograft for reconstruction of the neo-pulmonary root in the arterial switch operation. The Journal of Thoracic and Cardiovascular Surgery, 151, e89–e91.CrossRefPubMed Al-Radi, O. O. (2016). Aortic ring autograft for reconstruction of the neo-pulmonary root in the arterial switch operation. The Journal of Thoracic and Cardiovascular Surgery, 151, e89–e91.CrossRefPubMed
40.
go back to reference Settepani, F., Bergonzini, M., Barbone, A., Citterio, E., Basciu, A., Ornaghi, D., Gallotti, R., & Tarelli, G. (2009). Reimplantation valve-sparing aortic root replacement with the Valsalva graft: What have we learnt after 100 cases? Interactive Cardiovascular and Thoracic Surgery, 9, 113–116.CrossRefPubMed Settepani, F., Bergonzini, M., Barbone, A., Citterio, E., Basciu, A., Ornaghi, D., Gallotti, R., & Tarelli, G. (2009). Reimplantation valve-sparing aortic root replacement with the Valsalva graft: What have we learnt after 100 cases? Interactive Cardiovascular and Thoracic Surgery, 9, 113–116.CrossRefPubMed
41.
go back to reference Dodge-Khatami, A., Hallhagen, S., Limacher, K., Soderberg, B., & Jenni, R. (2012). Minimally invasive insertion of an equine stented pulmonary valve with a built-in sinus portion in a sheep model. Catheterization and Cardiovascular Interventions, 79, 654–658.CrossRefPubMed Dodge-Khatami, A., Hallhagen, S., Limacher, K., Soderberg, B., & Jenni, R. (2012). Minimally invasive insertion of an equine stented pulmonary valve with a built-in sinus portion in a sheep model. Catheterization and Cardiovascular Interventions, 79, 654–658.CrossRefPubMed
42.
go back to reference Schmidt, D., Dijkman, P. E., Driessen-Mol, A., Stenger, R., Mariani, C., Puolakka, A., Rissanen, M., Deichmann, T., Odermatt, B., Weber, B., Emmert, M. Y., Zund, G., Baaijens, F. P., & Hoerstrup, S. P. (2010). Minimally-invasive implantation of living tissue engineered heart valves: A comprehensive approach from autologous vascular cells to stem cells. Journal of the American College of Cardiology, 56, 510–520.CrossRefPubMed Schmidt, D., Dijkman, P. E., Driessen-Mol, A., Stenger, R., Mariani, C., Puolakka, A., Rissanen, M., Deichmann, T., Odermatt, B., Weber, B., Emmert, M. Y., Zund, G., Baaijens, F. P., & Hoerstrup, S. P. (2010). Minimally-invasive implantation of living tissue engineered heart valves: A comprehensive approach from autologous vascular cells to stem cells. Journal of the American College of Cardiology, 56, 510–520.CrossRefPubMed
43.
go back to reference Gottlieb, D., Kunal, T., Emani, S., Aikawa, E., Brown, D. W., Powell, A. J., Nedder, A., Engelmayr Jr., G. C., Melero-Martin, J. M., Sacks, M. S., & Mayer Jr., J. E. (2010). In vivo monitoring of function of autologous engineered pulmonary valve. The Journal of Thoracic and Cardiovascular Surgery, 139, 723–731.CrossRefPubMed Gottlieb, D., Kunal, T., Emani, S., Aikawa, E., Brown, D. W., Powell, A. J., Nedder, A., Engelmayr Jr., G. C., Melero-Martin, J. M., Sacks, M. S., & Mayer Jr., J. E. (2010). In vivo monitoring of function of autologous engineered pulmonary valve. The Journal of Thoracic and Cardiovascular Surgery, 139, 723–731.CrossRefPubMed
Metadata
Title
Development of an Off-the-Shelf Tissue-Engineered Sinus Valve for Transcatheter Pulmonary Valve Replacement: a Proof-of-Concept Study
Authors
Sarah E. Motta
Emanuela S. Fioretta
Petra E. Dijkman
Valentina Lintas
Luc Behr
Simon P. Hoerstrup
Maximilian Y. Emmert
Publication date
01-06-2018
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 3/2018
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9800-6

Other articles of this Issue 3/2018

Journal of Cardiovascular Translational Research 3/2018 Go to the issue