Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2023

08-11-2022 | Original Article

Development of an 18F-labeled anti-human CD8 VHH for same-day immunoPET imaging

Authors: Shravan Kumar Sriraman, Christopher W. Davies, Herman Gill, James R. Kiefer, Jianping Yin, Annie Ogasawara, Alejandra Urrutia, Vincent Javinal, Zhonghua Lin, Dhaya Seshasayee, Ryan Abraham, Phil Haas, Christopher Koth, Jan Marik, James T. Koerber, Simon Peter Williams

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2023

Login to get access

Abstract

Purpose

Cancer immunotherapies (CITs) have revolutionized the treatment of certain cancers, but many patients fail to respond or relapse from current therapies, prompting the need for new CIT agents. CD8+ T cells play a central role in the activity of many CITs, and thus, the rapid imaging of CD8+ cells could provide a critical biomarker for new CIT agents. However, existing 89Zr-labeled CD8 PET imaging reagents exhibit a long circulatory half-life and high radiation burden that limit potential applications such as same-day and longitudinal imaging.

Methods

To this end, we discovered and developed a 13-kDa single-domain antibody (VHH5v2) against human CD8 to enable high-quality, same-day imaging with a reduced radiation burden. To enable sensitive and rapid imaging, we employed a site-specific conjugation strategy to introduce an 18F radiolabel to the VHH.

Results

The anti-CD8 VHH, VHH5v2, demonstrated binding to a membrane distal epitope of human CD8 with a binding affinity (KD) of 500 pM. Subsequent imaging experiments in several xenografts that express varying levels of CD8 demonstrated rapid tumor uptake and fast clearance from the blood. High-quality images were obtained within 1 h post-injection and could quantitatively differentiate the tumor models based on CD8 expression level.

Conclusion

Our work reveals the potential of this anti-human CD8 VHH [18F]F-VHH5v2 to enable rapid and specific imaging of CD8+ cells in the clinic.
Appendix
Available only for authorised users
Literature
1.
go back to reference Borm FJ, Smit J, Oprea-Lager DE, Wondergem M, Haanen JBAG, Smit EF, et al. Response prediction and evaluation using PET in patients with solid tumors treated with immunotherapy. Cancers. 2021;13:3083.CrossRef Borm FJ, Smit J, Oprea-Lager DE, Wondergem M, Haanen JBAG, Smit EF, et al. Response prediction and evaluation using PET in patients with solid tumors treated with immunotherapy. Cancers. 2021;13:3083.CrossRef
2.
go back to reference Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Brit J Cancer. 2021;124:359–67.CrossRef Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Brit J Cancer. 2021;124:359–67.CrossRef
3.
go back to reference Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R, Bernardo I, et al. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nat Immunol. 2011;12:1086–95.CrossRef Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R, Bernardo I, et al. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nat Immunol. 2011;12:1086–95.CrossRef
4.
go back to reference Moebius U, Kober G, Griscelli AL, Hercend T, Meuer SC. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol. 1991;21:1793–800.CrossRef Moebius U, Kober G, Griscelli AL, Hercend T, Meuer SC. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol. 1991;21:1793–800.CrossRef
5.
go back to reference Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.CrossRef Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.CrossRef
6.
go back to reference Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9.CrossRef Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9.CrossRef
7.
go back to reference Ogasawara A, Kiefer JR, Gill H, Chiang E, Sriraman S, Ferl GZ, et al. Preclinical development of ZED8 an 89Zr immuno-PET reagent for monitoring tumor CD8 status in patients undergoing cancer immunotherapy. Eur J Nucl Med Mol Imaging. 2022. https://doi.org/10.1007/s00259-022-05968-6. Ogasawara A, Kiefer JR, Gill H, Chiang E, Sriraman S, Ferl GZ, et al. Preclinical development of ZED8 an 89Zr immuno-PET reagent for monitoring tumor CD8 status in patients undergoing cancer immunotherapy. Eur J Nucl Med Mol Imaging. 2022. https://​doi.​org/​10.​1007/​s00259-022-05968-6.
8.
9.
go back to reference Feo MSD, Pontico M, Frantellizzi V, Corica F, Cristofaro FD, Vincentis GD. 89Zr-PET imaging in humans: a systematic review. Clin Transl Imaging. 2022;10:23–36.CrossRef Feo MSD, Pontico M, Frantellizzi V, Corica F, Cristofaro FD, Vincentis GD. 89Zr-PET imaging in humans: a systematic review. Clin Transl Imaging. 2022;10:23–36.CrossRef
10.
go back to reference Rashidian M, Ploegh H. Nanobodies as noninvasive imaging tools. Immuno-oncology Technol. 2020;7:2–14.CrossRef Rashidian M, Ploegh H. Nanobodies as noninvasive imaging tools. Immuno-oncology Technol. 2020;7:2–14.CrossRef
11.
go back to reference Schoonooghe S, Laoui D, Ginderachter JAV, Devoogdt N, Lahoutte T, Baetselier PD, et al. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology. 2012;217:1266–72.CrossRef Schoonooghe S, Laoui D, Ginderachter JAV, Devoogdt N, Lahoutte T, Baetselier PD, et al. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology. 2012;217:1266–72.CrossRef
12.
go back to reference Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, et al. Antibodies targeting closely adjacent or minimally overlapping epitopes can displace one another. Plos one. 2017;12:e0169535.CrossRef Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, et al. Antibodies targeting closely adjacent or minimally overlapping epitopes can displace one another. Plos one. 2017;12:e0169535.CrossRef
13.
go back to reference Otwinowski Z, Minor W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.CrossRef Otwinowski Z, Minor W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.CrossRef
14.
go back to reference McCoy AJ, Oeffner RD, Wrobel AG, Ojala JRM, Tryggvason K, Lohkamp B, et al. Ab initio solution of macromolecular crystal structures without direct methods. Proc Natl Acad Sci. 2017;114:3637–41.CrossRef McCoy AJ, Oeffner RD, Wrobel AG, Ojala JRM, Tryggvason K, Lohkamp B, et al. Ab initio solution of macromolecular crystal structures without direct methods. Proc Natl Acad Sci. 2017;114:3637–41.CrossRef
15.
go back to reference Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biological Crystallogr. 2004;60:2126–32.CrossRef Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biological Crystallogr. 2004;60:2126–32.CrossRef
16.
go back to reference Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biological Crystallogr. 2010;66:213–21.CrossRef Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biological Crystallogr. 2010;66:213–21.CrossRef
17.
go back to reference Genst ED, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc National Acad Sci. 2006;103:4586–91.CrossRef Genst ED, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc National Acad Sci. 2006;103:4586–91.CrossRef
18.
go back to reference Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. Aaps J. 2020;22:22.CrossRef Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. Aaps J. 2020;22:22.CrossRef
19.
go back to reference Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51:R541–78.CrossRef Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51:R541–78.CrossRef
20.
go back to reference Wang R, Natarajan K, Margulies DH. Structural basis of the CD8αβ/MHC class I interaction: focused recognition orients CD8β to a T cell proximal position. J Immunol. 2009;183:2554–64.CrossRef Wang R, Natarajan K, Margulies DH. Structural basis of the CD8αβ/MHC class I interaction: focused recognition orients CD8β to a T cell proximal position. J Immunol. 2009;183:2554–64.CrossRef
21.
go back to reference Sun J, Kavathas PB. Comparison of the roles of CD8 alpha alpha and CD8 alpha beta in interaction with MHC class I. J Immunol Baltim Md. 1950;1997(159):6077–82. Sun J, Kavathas PB. Comparison of the roles of CD8 alpha alpha and CD8 alpha beta in interaction with MHC class I. J Immunol Baltim Md. 1950;1997(159):6077–82.
22.
go back to reference Bostrom J, Lee CV, Haber L, Fuh G. Therapeutic antibodies, methods and protocols. Methods Mol Biol. 2008;525:353–76.CrossRef Bostrom J, Lee CV, Haber L, Fuh G. Therapeutic antibodies, methods and protocols. Methods Mol Biol. 2008;525:353–76.CrossRef
23.
go back to reference Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–100.CrossRef Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–100.CrossRef
24.
go back to reference Barnett D, Storie I, Granger V, Whitby L, Reilly JT, Brough S, et al. Standardization of lymphocyte antibody binding capacity – a multi-centre study. Clin Lab Haematol. 2000;22:89–96.CrossRef Barnett D, Storie I, Granger V, Whitby L, Reilly JT, Brough S, et al. Standardization of lymphocyte antibody binding capacity – a multi-centre study. Clin Lab Haematol. 2000;22:89–96.CrossRef
25.
go back to reference Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214:2243–55.CrossRef Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214:2243–55.CrossRef
26.
go back to reference Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.CrossRef Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.CrossRef
27.
go back to reference Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry-us. 2002;41:3628–36.CrossRef Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry-us. 2002;41:3628–36.CrossRef
28.
go back to reference Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinform. 2018;86:697–706.CrossRef Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinform. 2018;86:697–706.CrossRef
29.
go back to reference Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31:267–75.CrossRef Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31:267–75.CrossRef
30.
go back to reference Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541:321–30.CrossRef Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541:321–30.CrossRef
31.
go back to reference Echarti A, Hecht M, Büttner-Herold M, Haderlein M, Hartmann A, Fietkau R, et al. CD8+ and regulatory T cells differentiate tumor immune phenotypes and predict survival in locally advanced head and neck cancer. Cancers. 2019;11:1398.CrossRef Echarti A, Hecht M, Büttner-Herold M, Haderlein M, Hartmann A, Fietkau R, et al. CD8+ and regulatory T cells differentiate tumor immune phenotypes and predict survival in locally advanced head and neck cancer. Cancers. 2019;11:1398.CrossRef
32.
go back to reference Tolmachev V, Tran TA, Rosik D, Sjöberg A, Abrahmsén L, Orlova A. Tumor targeting using affibody molecules: interplay of affinity, target expression level, and binding site composition. J Nucl Med. 2012;53:953–60.CrossRef Tolmachev V, Tran TA, Rosik D, Sjöberg A, Abrahmsén L, Orlova A. Tumor targeting using affibody molecules: interplay of affinity, target expression level, and binding site composition. J Nucl Med. 2012;53:953–60.CrossRef
33.
go back to reference Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016;6:262–71.CrossRef Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016;6:262–71.CrossRef
34.
go back to reference Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isotopes. 2013;76:55–62.CrossRef Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isotopes. 2013;76:55–62.CrossRef
35.
go back to reference Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, et al. Noninvasive imaging of immune responses. P Natl Acad Sci Usa. 2015;112:6146–51.CrossRef Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, et al. Noninvasive imaging of immune responses. P Natl Acad Sci Usa. 2015;112:6146–51.CrossRef
36.
go back to reference Barakat S, Berksoz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radical Bio Med. 2022;182:260–75.CrossRef Barakat S, Berksoz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radical Bio Med. 2022;182:260–75.CrossRef
37.
go back to reference Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998;25:201–12.CrossRef Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998;25:201–12.CrossRef
38.
go back to reference Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77:2318–27.CrossRef Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77:2318–27.CrossRef
39.
go back to reference Roth KS, Voltin C-A, van-Heek L, Wegen S, Schomaecker K, Fischer T, et al (2022) Dual-tracer PET/CT protocol with [ 18 F]-FDG and [ 68 Ga]Ga-FAPI-46 for cancer imaging - a proof of concept. J Nucl Med. jnumed.122.263835. Roth KS, Voltin C-A, van-Heek L, Wegen S, Schomaecker K, Fischer T, et al (2022) Dual-tracer PET/CT protocol with [ 18 F]-FDG and [ 68 Ga]Ga-FAPI-46 for cancer imaging - a proof of concept. J Nucl Med. jnumed.122.263835.
40.
go back to reference Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.CrossRef Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.CrossRef
Metadata
Title
Development of an 18F-labeled anti-human CD8 VHH for same-day immunoPET imaging
Authors
Shravan Kumar Sriraman
Christopher W. Davies
Herman Gill
James R. Kiefer
Jianping Yin
Annie Ogasawara
Alejandra Urrutia
Vincent Javinal
Zhonghua Lin
Dhaya Seshasayee
Ryan Abraham
Phil Haas
Christopher Koth
Jan Marik
James T. Koerber
Simon Peter Williams
Publication date
08-11-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2023
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05998-0

Other articles of this Issue 3/2023

European Journal of Nuclear Medicine and Molecular Imaging 3/2023 Go to the issue