Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 5/2017

01-05-2017 | Technical Note

Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning

Authors: F. Edward Boas, Govindarajan Srimathveeravalli, Jeremy C. Durack, Elena A. Kaye, Joseph P. Erinjeri, Etay Ziv, Majid Maybody, Hooman Yarmohammadi, Stephen B. Solomon

Published in: CardioVascular and Interventional Radiology | Issue 5/2017

Login to get access

Abstract

Purpose

To create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated.

Materials and Methods

Ice ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1–6 cryoablation probes and 1–2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements were obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions.

Results

Average absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm.

Conclusion

Cryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.
Literature
1.
go back to reference Zargar H, Atwell TD, Cadeddu JA, et al. Cryoablation for small renal masses: selection criteria, complications, and functional and oncologic results. Eur Urol. 2016;69(1):116–28.CrossRefPubMed Zargar H, Atwell TD, Cadeddu JA, et al. Cryoablation for small renal masses: selection criteria, complications, and functional and oncologic results. Eur Urol. 2016;69(1):116–28.CrossRefPubMed
2.
go back to reference Valerio M, Ahmed HU, Emberton M, et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol. 2014;66(4):732–51.CrossRefPubMedPubMedCentral Valerio M, Ahmed HU, Emberton M, et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol. 2014;66(4):732–51.CrossRefPubMedPubMedCentral
3.
go back to reference Littrup PJ, Aoun HD, Adam B, Krycia M, Prus M, Shields A. Percutaneous cryoablation of hepatic tumors: long-term experience of a large US series. Abdom Radiol. 2016;41(4):767–80.CrossRef Littrup PJ, Aoun HD, Adam B, Krycia M, Prus M, Shields A. Percutaneous cryoablation of hepatic tumors: long-term experience of a large US series. Abdom Radiol. 2016;41(4):767–80.CrossRef
4.
go back to reference de Baere T, Tselikas L, Woodrum D, et al. Evaluating cryoablation of metastatic lung tumors in patients-safety and efficacy: the ECLIPSE trial-interim analysis at 1 year. J Thorac Oncol. 2015;10(10):1468–74.CrossRefPubMed de Baere T, Tselikas L, Woodrum D, et al. Evaluating cryoablation of metastatic lung tumors in patients-safety and efficacy: the ECLIPSE trial-interim analysis at 1 year. J Thorac Oncol. 2015;10(10):1468–74.CrossRefPubMed
5.
go back to reference Simmons RM, Ballman KV, Cox C, et al. A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Ann Surg Oncol. 2016;23(8):2438–45.CrossRefPubMed Simmons RM, Ballman KV, Cox C, et al. A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Ann Surg Oncol. 2016;23(8):2438–45.CrossRefPubMed
6.
go back to reference Maybody M, Tang PQ, Moskowitz CS, Hsu M, Yarmohammadi H, Boas FE. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours. Eur Radiol. 2016. doi:10.1007/s00330-016-4456-6. Maybody M, Tang PQ, Moskowitz CS, Hsu M, Yarmohammadi H, Boas FE. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours. Eur Radiol. 2016. doi:10.​1007/​s00330-016-4456-6.
7.
go back to reference Callstrom MR, Dupuy DE, Solomon SB, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41.CrossRefPubMed Callstrom MR, Dupuy DE, Solomon SB, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41.CrossRefPubMed
8.
go back to reference Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT Jr, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation—what should you use and why? Radiographics. 2014;34(5):1344–62.CrossRefPubMedPubMedCentral Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT Jr, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation—what should you use and why? Radiographics. 2014;34(5):1344–62.CrossRefPubMedPubMedCentral
9.
go back to reference Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S187–91.CrossRefPubMed Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S187–91.CrossRefPubMed
10.
go back to reference Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.CrossRefPubMed Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.CrossRefPubMed
12.
go back to reference Young JL, McCormick DW, Kolla SB, et al. Are multiple cryoprobes additive or synergistic in renal cryotherapy? Urology. 2012;79(2):484.CrossRefPubMed Young JL, McCormick DW, Kolla SB, et al. Are multiple cryoprobes additive or synergistic in renal cryotherapy? Urology. 2012;79(2):484.CrossRefPubMed
13.
go back to reference Littrup PJ, Jallad B, Vorugu V, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol. 2009;20(10):1343–51.CrossRefPubMedPubMedCentral Littrup PJ, Jallad B, Vorugu V, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol. 2009;20(10):1343–51.CrossRefPubMedPubMedCentral
14.
go back to reference Kim C, O’Rourke AP, Mahvi DM, Webster JG. Finite-element analysis of ex vivo and in vivo hepatic cryoablation. IEEE Trans Bio-Med Eng. 2007;54(7):1177–85.CrossRef Kim C, O’Rourke AP, Mahvi DM, Webster JG. Finite-element analysis of ex vivo and in vivo hepatic cryoablation. IEEE Trans Bio-Med Eng. 2007;54(7):1177–85.CrossRef
15.
go back to reference Shah TT, Arbel U, Foss S, et al. Modeling cryotherapy ice-ball dimensions and isotherms in a novel gel based model to determine optimal cryo-needle configurations and settings for potential use in clinical practice. Urology. 2016;91:234–40.CrossRefPubMedPubMedCentral Shah TT, Arbel U, Foss S, et al. Modeling cryotherapy ice-ball dimensions and isotherms in a novel gel based model to determine optimal cryo-needle configurations and settings for potential use in clinical practice. Urology. 2016;91:234–40.CrossRefPubMedPubMedCentral
16.
go back to reference Shyn PB, Mauri G, Alencar RO, et al. Percutaneous imaging-guided cryoablation of liver tumors: predicting local progression on 24-hour MRI. Am J Roentgenol. 2014;203(2):W181–91.CrossRef Shyn PB, Mauri G, Alencar RO, et al. Percutaneous imaging-guided cryoablation of liver tumors: predicting local progression on 24-hour MRI. Am J Roentgenol. 2014;203(2):W181–91.CrossRef
17.
go back to reference Poon RT, Ng KK, Lam CM, et al. Learning curve for radiofrequency ablation of liver tumors: prospective analysis of initial 100 patients in a tertiary institution. Ann Surg. 2004;239(4):441–9.CrossRefPubMedPubMedCentral Poon RT, Ng KK, Lam CM, et al. Learning curve for radiofrequency ablation of liver tumors: prospective analysis of initial 100 patients in a tertiary institution. Ann Surg. 2004;239(4):441–9.CrossRefPubMedPubMedCentral
18.
go back to reference Lee TY, Lin JT, Ho HJ, Wu MS, Wu CY. Evaluation of the effect of cumulative operator experience on hepatocellular carcinoma recurrence after primary treatment with radiofrequency ablation. Radiology. 2015;276(1):294–301.CrossRefPubMed Lee TY, Lin JT, Ho HJ, Wu MS, Wu CY. Evaluation of the effect of cumulative operator experience on hepatocellular carcinoma recurrence after primary treatment with radiofrequency ablation. Radiology. 2015;276(1):294–301.CrossRefPubMed
19.
go back to reference Schmit GD, Atwell TD, Callstrom MR, et al. Percutaneous cryoablation of renal masses ≥ 3 cm: efficacy and safety in treatment of 108 patients. J Endourol. 2010;24(8):1255–62.CrossRefPubMed Schmit GD, Atwell TD, Callstrom MR, et al. Percutaneous cryoablation of renal masses ≥ 3 cm: efficacy and safety in treatment of 108 patients. J Endourol. 2010;24(8):1255–62.CrossRefPubMed
20.
go back to reference Chen MM, Holmes KR. Microvascular contributions in tissue heat transfer. Ann N. Y. Acad Sci. 1980;335:137–50.CrossRefPubMed Chen MM, Holmes KR. Microvascular contributions in tissue heat transfer. Ann N. Y. Acad Sci. 1980;335:137–50.CrossRefPubMed
22.
go back to reference Kreith F, Goswami DY. The CRC handbook of mechanical engineering. Boca Raton: CRC Press; 2005. Kreith F, Goswami DY. The CRC handbook of mechanical engineering. Boca Raton: CRC Press; 2005.
23.
go back to reference Lide DR. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2000. Lide DR. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2000.
25.
go back to reference Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH. Report of the task group on reference man. Ann ICRP. 1975;23:1–480. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH. Report of the task group on reference man. Ann ICRP. 1975;23:1–480.
Metadata
Title
Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning
Authors
F. Edward Boas
Govindarajan Srimathveeravalli
Jeremy C. Durack
Elena A. Kaye
Joseph P. Erinjeri
Etay Ziv
Majid Maybody
Hooman Yarmohammadi
Stephen B. Solomon
Publication date
01-05-2017
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 5/2017
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-016-1562-4

Other articles of this Issue 5/2017

CardioVascular and Interventional Radiology 5/2017 Go to the issue