Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 3/2013

01-06-2013 | Original Research

Development of a practicable non-contact bedside autonomic activation monitoring system using microwave radars and its clinical application in elderly people

Authors: Takemi Matsui, Yuto Yoshida, Masayuki Kagawa, Masayuki Kubota, Akira Kurita

Published in: Journal of Clinical Monitoring and Computing | Issue 3/2013

Login to get access

Abstract

We developed a practicable, non-contact, autonomic activation monitoring system using microwave radars without imposing any stress on monitored individuals. Recently, the rapid increase in the aging population has raised concerns in developed countries. Thus, hospitals and care facilities will need to perform long-term health monitoring of elderly patients. The system allows monitoring of geriatric autonomic dysfunctions caused by chronic diseases, such as diabetes or myocardial infarction (MI), while measuring vital signs in non-contact way. The system measures heart rate variability (HRV) of elderly people in bed using dual, 24-GHz, compact microwave radars attached beneath the bed mattress. HRV parameters (LF, HF, and LF/HF) were determined from the cardiac peak-to-peak intervals, which were detected by radars using the maximum entropy method. We tested the system on 15 elderly people with and without diabetes or MI (72–99 years old) from 7:00 p.m. to 6:00 a.m. at a special nursing home in Tokyo. LF/HF obtained by the system correlated significantly (R = 0.89; p < 0.01) with those obtained by Holter electrocardiography (ECG). Diabetic subjects showed significantly lower LF (radar) than non-diabetic (119.8 ± 57.8 for diabetic, 405.9 ± 112.6 for non-diabetic, p < 0.01). HF (radar) of post-MI subjects was significantly lower than that of non-MI (219.7 ± 131.7 for post-MI and 580.0 ± 654.6 for non-MI, p < 0.05). Previous studies using conventional ECG reveal that diabetic neuropathy decreases LF, and also MI causes parasympathetic attenuation which leads to HF reduction. Our study showed that average SDNN of post-MI patients is smaller than 50 ms which is known to have high mortality. The non-contact autonomic activation monitoring system allows a long-term health management especially during sleeping hours for elderly people at healthcare facilities.
Literature
1.
go back to reference Fujimoto Y, Fukuki M, Hoshio A, Sasaki N, Hamada T, Tanaka Y, Yoshida A, Shigemasa C, Mashiba H. Decreased heart rate variability in patients with diabetes mellitus and ischemic heart disease. Jpn Circ J. 1996;60(12):925–32.PubMedCrossRef Fujimoto Y, Fukuki M, Hoshio A, Sasaki N, Hamada T, Tanaka Y, Yoshida A, Shigemasa C, Mashiba H. Decreased heart rate variability in patients with diabetes mellitus and ischemic heart disease. Jpn Circ J. 1996;60(12):925–32.PubMedCrossRef
2.
go back to reference Jakobsen J, Christiansen JS, Kristoffersen I, Christensen CK, Hermansen K, Schmitz A, Mogensen CE. Autonomic and somatosensory nerve function after 2 years of continuous subcutaneous insulin infusion in type I diabetes. Diabetes. 1988;37(4):452–5.PubMedCrossRef Jakobsen J, Christiansen JS, Kristoffersen I, Christensen CK, Hermansen K, Schmitz A, Mogensen CE. Autonomic and somatosensory nerve function after 2 years of continuous subcutaneous insulin infusion in type I diabetes. Diabetes. 1988;37(4):452–5.PubMedCrossRef
3.
go back to reference Orlov S, Bril V, Orszag A, Perkins BA. Heart rate variability and sensorimotor polyneuropathy in type 1 diabetes. Diabetes Care. 2012;35(4):809–16. Epub 2012.PubMedCrossRef Orlov S, Bril V, Orszag A, Perkins BA. Heart rate variability and sensorimotor polyneuropathy in type 1 diabetes. Diabetes Care. 2012;35(4):809–16. Epub 2012.PubMedCrossRef
4.
go back to reference Craelius W, Akay M, Tangella M. Heart rate variability as an index of autonomic imbalance in patients with recent myocardial infarction. Med Biol Eng Comput. 1992;30(4):385–8.PubMedCrossRef Craelius W, Akay M, Tangella M. Heart rate variability as an index of autonomic imbalance in patients with recent myocardial infarction. Med Biol Eng Comput. 1992;30(4):385–8.PubMedCrossRef
5.
go back to reference Counihan PJ, Fei L, Bashir Y, Farrell TG, Haywood GA, McKenna WJ. Assessment of heart rate variability in hypertrophic cardiomyopathy. Association with clinical and prognostic features. Circulation. 1993;88(4 Pt 1):1682–90.CrossRef Counihan PJ, Fei L, Bashir Y, Farrell TG, Haywood GA, McKenna WJ. Assessment of heart rate variability in hypertrophic cardiomyopathy. Association with clinical and prognostic features. Circulation. 1993;88(4 Pt 1):1682–90.CrossRef
6.
go back to reference Maestri R, Raczak G, Danilowicz-Szymanowicz L, Torunski A, Sukiennik A, Kubica J, La Rovere MT, Pinna GD. Reliability of heart rate variability measurements in patients with a history of myocardial infarction. Clin Sci. 2009;118(3):195–201.PubMedCrossRef Maestri R, Raczak G, Danilowicz-Szymanowicz L, Torunski A, Sukiennik A, Kubica J, La Rovere MT, Pinna GD. Reliability of heart rate variability measurements in patients with a history of myocardial infarction. Clin Sci. 2009;118(3):195–201.PubMedCrossRef
7.
go back to reference Matsui T, Arai I, Gotoh S, Hattori H, Takase B, Kikuchi M, Ishihara M. A novel apparatus for non-contact measurement of heart rate variability: a system to prevent secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, in monitoring sepsis or in predicting multiple organ dysfunction syndrome. Biomed Pharmacother. 2005;59(Suppl 1):S188–91.PubMedCrossRef Matsui T, Arai I, Gotoh S, Hattori H, Takase B, Kikuchi M, Ishihara M. A novel apparatus for non-contact measurement of heart rate variability: a system to prevent secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, in monitoring sepsis or in predicting multiple organ dysfunction syndrome. Biomed Pharmacother. 2005;59(Suppl 1):S188–91.PubMedCrossRef
8.
go back to reference Suzuki S, Matsui T, Imuta H, Uenoyama M, Yura H, Ishihara M, Kawakami M. A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar. Med Biol Eng Comput. 2008;46(7):709–14. Epub 2008.PubMedCrossRef Suzuki S, Matsui T, Imuta H, Uenoyama M, Yura H, Ishihara M, Kawakami M. A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar. Med Biol Eng Comput. 2008;46(7):709–14. Epub 2008.PubMedCrossRef
10.
go back to reference Kagawa M, Yoshida Y, Kubota M, Kurita A, Matsui T. Non-contact heart rate monitoring method for elderly people in bed with random body motions using 24 GHz dual radars located beneath the mattress in clinical settings. J Med Eng Technol. 2012. [Epub ahead of print]. Kagawa M, Yoshida Y, Kubota M, Kurita A, Matsui T. Non-contact heart rate monitoring method for elderly people in bed with random body motions using 24 GHz dual radars located beneath the mattress in clinical settings. J Med Eng Technol. 2012. [Epub ahead of print].
11.
go back to reference Matsui T, Hakozaki Y, Suzuki S, Usui T, Kato T, Hasegawa K, Sugiyama Y, Sugamata M, Abe S. A novel screening method for influenza patients using a newly developed non-contact screening system. J Infect. 2010;60(4):271–7. Epub 2010.PubMedCrossRef Matsui T, Hakozaki Y, Suzuki S, Usui T, Kato T, Hasegawa K, Sugiyama Y, Sugamata M, Abe S. A novel screening method for influenza patients using a newly developed non-contact screening system. J Infect. 2010;60(4):271–7. Epub 2010.PubMedCrossRef
12.
go back to reference Uenoyama M, Matsui T, Yamada K, Suzuki S, Takase B, Suzuki S, Ishihara M, Kawakami M. Non-contact respiratory monitoring system using a ceiling-attached microwave antenna. Med Biol Eng Comput. 2006;44(9):835–40. Epub 2006.PubMedCrossRef Uenoyama M, Matsui T, Yamada K, Suzuki S, Takase B, Suzuki S, Ishihara M, Kawakami M. Non-contact respiratory monitoring system using a ceiling-attached microwave antenna. Med Biol Eng Comput. 2006;44(9):835–40. Epub 2006.PubMedCrossRef
13.
go back to reference Matsui T, Hagisawa K, Ishizuka T, Takase B, Ishihara M, Kikuchi M. A novel method to prevent secondary exposure of medical and rescue personnel to toxic materials under biochemical hazard conditions using microwave radar and infrared thermography. IEEE Trans Biomed Eng. 2004;51(12):2184–8.PubMedCrossRef Matsui T, Hagisawa K, Ishizuka T, Takase B, Ishihara M, Kikuchi M. A novel method to prevent secondary exposure of medical and rescue personnel to toxic materials under biochemical hazard conditions using microwave radar and infrared thermography. IEEE Trans Biomed Eng. 2004;51(12):2184–8.PubMedCrossRef
14.
go back to reference Chen KM, Huang Y, Zhang J, Norman A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans Biomed Eng. 2000;47(1):105–14.PubMedCrossRef Chen KM, Huang Y, Zhang J, Norman A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans Biomed Eng. 2000;47(1):105–14.PubMedCrossRef
15.
go back to reference Kleiger RE, Miller JP, Bigger JT Jr. Moss AJ Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.PubMedCrossRef Kleiger RE, Miller JP, Bigger JT Jr. Moss AJ Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.PubMedCrossRef
16.
go back to reference Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S, Migliaro ER. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care. 2003;18(3):156–63.PubMedCrossRef Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S, Migliaro ER. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care. 2003;18(3):156–63.PubMedCrossRef
Metadata
Title
Development of a practicable non-contact bedside autonomic activation monitoring system using microwave radars and its clinical application in elderly people
Authors
Takemi Matsui
Yuto Yoshida
Masayuki Kagawa
Masayuki Kubota
Akira Kurita
Publication date
01-06-2013
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 3/2013
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-013-9448-3

Other articles of this Issue 3/2013

Journal of Clinical Monitoring and Computing 3/2013 Go to the issue