Skip to main content
Top
Published in: Malaria Journal 1/2014

Open Access 01-12-2014 | Research

Development and validation of climate and ecosystem-based early malaria epidemic prediction models in East Africa

Authors: Andrew K Githeko, Laban Ogallo, Martha Lemnge, Michael Okia, Ednah N Ototo

Published in: Malaria Journal | Issue 1/2014

Login to get access

Abstract

Background

Malaria epidemics remain a serious threat to human populations living in the highlands of East Africa where transmission is unstable and climate sensitive. An existing early malaria epidemic prediction model required further development, validations and automation before its wide use and application in the region. The model has a lead-time of two to four months between the detection of the epidemic signal and the evolution of the epidemic. The validated models would be of great use in the early detection and prevention of malaria epidemics.

Methods

Confirmed inpatient malaria data were collected from eight sites in Kenya, Tanzania and Uganda for the period 1995-2009. Temperature and rainfall data for the period 1960-2009 were collected from meteorological stations closest to the source of the malaria data. Process-based models were constructed for computing the risk of an epidemic in two general highland ecosystems using temperature and rainfall data. The sensitivity, specificity and positive predictive power were used to validate the models.

Results

Depending on the availability and quality of the malaria and meteorological data, the models indicated good functionality at all sites. Only two sites in Kenya had data that met the criteria for the full validation of the models. The additive model was found most suited for the poorly drained U-shaped valley ecosystems while the multiplicative model was most suited for the well-drained V-shaped valley ecosystem. The +18°C model was adaptable to any of the ecosystems and was designed for conditions where climatology data were not available. The additive model scored 100% for sensitivity, specificity and positive predictive power. The multiplicative model had a sensitivity of 75% specificity of 99% and a positive predictive power of 86%.

Conclusions

The additive and multiplicative models were validated and were shown to be robust and with high climate-based, early epidemic predictive power. They are designed for use in the common, well- and poorly drained valley ecosystems in the highlands of East Africa.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kitua AY, Ogundahunsi OAT, Lines J, Mgone CS: Conquering malaria: enhancing the impact of effective interventions towards elimination in the diverse and changing epidemiology. J Glob Infect Dis. 2011, 3: 161-10.4103/0974-777X.81694.PubMedCentralCrossRefPubMed Kitua AY, Ogundahunsi OAT, Lines J, Mgone CS: Conquering malaria: enhancing the impact of effective interventions towards elimination in the diverse and changing epidemiology. J Glob Infect Dis. 2011, 3: 161-10.4103/0974-777X.81694.PubMedCentralCrossRefPubMed
2.
3.
go back to reference Paaijmans KP, Read AF, Thomas MB: Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A. 2009, 106: 13844-13849. 10.1073/pnas.0903423106.PubMedCentralCrossRefPubMed Paaijmans KP, Read AF, Thomas MB: Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A. 2009, 106: 13844-13849. 10.1073/pnas.0903423106.PubMedCentralCrossRefPubMed
4.
go back to reference Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan G: Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J. 2006, 5: 107-10.1186/1475-2875-5-107.PubMedCentralCrossRefPubMed Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan G: Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J. 2006, 5: 107-10.1186/1475-2875-5-107.PubMedCentralCrossRefPubMed
5.
go back to reference Lindsay SW, Martens WJ: Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998, 76: 33-PubMedCentralPubMed Lindsay SW, Martens WJ: Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998, 76: 33-PubMedCentralPubMed
6.
go back to reference Omumbo JA, Bradfield L, Waweru SM, Connor SJ, Thomson MC: Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malar J. 2011, 10: 12-10.1186/1475-2875-10-12.PubMedCentralCrossRefPubMed Omumbo JA, Bradfield L, Waweru SM, Connor SJ, Thomson MC: Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malar J. 2011, 10: 12-10.1186/1475-2875-10-12.PubMedCentralCrossRefPubMed
7.
go back to reference Woyessa A, Gebre-Micheal T, Ali A: An indigenous malaria transmission in the out-skirts of Addis Ababa, Akaki Town and its environs. Ethiop J Health Dev. 2004, 18: 2-7.CrossRef Woyessa A, Gebre-Micheal T, Ali A: An indigenous malaria transmission in the out-skirts of Addis Ababa, Akaki Town and its environs. Ethiop J Health Dev. 2004, 18: 2-7.CrossRef
8.
go back to reference Githeko AK: Malaria, Climate Change and Possible impacts on Populations in Africa. HIV, Resurgent Infections and Population Change in Africa. Edited by: Carael M, Glynn J. 2007, Dordrecht, The Netherlands: Springer, 67-78. vol. 6CrossRef Githeko AK: Malaria, Climate Change and Possible impacts on Populations in Africa. HIV, Resurgent Infections and Population Change in Africa. Edited by: Carael M, Glynn J. 2007, Dordrecht, The Netherlands: Springer, 67-78. vol. 6CrossRef
9.
go back to reference Githeko AK, Ndegwa W: Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Global Change Human Health. 2001, 2: 54-63. 10.1023/A:1011943131643.CrossRef Githeko AK, Ndegwa W: Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Global Change Human Health. 2001, 2: 54-63. 10.1023/A:1011943131643.CrossRef
10.
go back to reference Kovats RS, Campbell-Lendrum DH, McMichel AJ, Woodward A, Cox JSH: Early effects of climate change: do they include changes in vector-borne disease?. Philos Trans R Soc Lond B Biol Sci. 2001, 356: 1057-1068. 10.1098/rstb.2001.0894.PubMedCentralCrossRefPubMed Kovats RS, Campbell-Lendrum DH, McMichel AJ, Woodward A, Cox JSH: Early effects of climate change: do they include changes in vector-borne disease?. Philos Trans R Soc Lond B Biol Sci. 2001, 356: 1057-1068. 10.1098/rstb.2001.0894.PubMedCentralCrossRefPubMed
11.
go back to reference Worrall E, Rietveld A, Delacollette C: The burden of malaria epidemics and cost-effectiveness of interventions in epidemic situations in Africa. Am J Trop Med Hyg. 2004, 71: 136-140.PubMed Worrall E, Rietveld A, Delacollette C: The burden of malaria epidemics and cost-effectiveness of interventions in epidemic situations in Africa. Am J Trop Med Hyg. 2004, 71: 136-140.PubMed
12.
go back to reference Jones AE, Wort UU, Morse AP, Hastings IM, Gagnon AS: Climate prediction of El Nino malaria epidemics in north-west Tanzania. Malar J. 2007, 6: 162-10.1186/1475-2875-6-162.PubMedCentralCrossRefPubMed Jones AE, Wort UU, Morse AP, Hastings IM, Gagnon AS: Climate prediction of El Nino malaria epidemics in north-west Tanzania. Malar J. 2007, 6: 162-10.1186/1475-2875-6-162.PubMedCentralCrossRefPubMed
13.
go back to reference Malakooti MA, Biomndo K, Shanks GD: Reemergence of epidemic malaria in the highlands of western Kenya. Emerg Infect Dis. 1998, 4: 671-10.3201/eid0404.980422.PubMedCentralCrossRefPubMed Malakooti MA, Biomndo K, Shanks GD: Reemergence of epidemic malaria in the highlands of western Kenya. Emerg Infect Dis. 1998, 4: 671-10.3201/eid0404.980422.PubMedCentralCrossRefPubMed
14.
go back to reference Some ES: Effects and control of highland malaria epidemic in Uasin Gishu District, Kenya. East Afr Med J. 1994, 71: 2-PubMed Some ES: Effects and control of highland malaria epidemic in Uasin Gishu District, Kenya. East Afr Med J. 1994, 71: 2-PubMed
15.
go back to reference Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J: Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J. 2004, 3: 41-10.1186/1475-2875-3-41.PubMedCentralCrossRefPubMed Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J: Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J. 2004, 3: 41-10.1186/1475-2875-3-41.PubMedCentralCrossRefPubMed
16.
go back to reference Chaves LF, Pascual M: Comparing models for early warning systems of neglected tropical diseases. PLoS Negl Trop Dis. 2007, 1: e33-10.1371/journal.pntd.0000033.PubMedCentralCrossRefPubMed Chaves LF, Pascual M: Comparing models for early warning systems of neglected tropical diseases. PLoS Negl Trop Dis. 2007, 1: e33-10.1371/journal.pntd.0000033.PubMedCentralCrossRefPubMed
17.
go back to reference Wanjala CL, Waitumbi J, Zhou G, Githeko AK: Identification of malaria transmission and epidemic hotspots in the Western Kenya highlands: its application to malaria epidemic prediction. Parasit Vectors. 2011, 4: 81-10.1186/1756-3305-4-81.PubMedCentralCrossRefPubMed Wanjala CL, Waitumbi J, Zhou G, Githeko AK: Identification of malaria transmission and epidemic hotspots in the Western Kenya highlands: its application to malaria epidemic prediction. Parasit Vectors. 2011, 4: 81-10.1186/1756-3305-4-81.PubMedCentralCrossRefPubMed
18.
go back to reference Ototo EN, Githeko AK, Wanjala CL, Scott TW: Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: opportunities for early detection of malaria hyper-transmission. Parasit Vectors. 2011, 4: 144-10.1186/1756-3305-4-144.PubMedCentralCrossRefPubMed Ototo EN, Githeko AK, Wanjala CL, Scott TW: Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: opportunities for early detection of malaria hyper-transmission. Parasit Vectors. 2011, 4: 144-10.1186/1756-3305-4-144.PubMedCentralCrossRefPubMed
19.
go back to reference Baldessarini RJ, Finklestein S, Arana GW: The predictive power of diagnostic tests and the effect of prevalence of illness. Psychiatry. 1983, 40: 569- Baldessarini RJ, Finklestein S, Arana GW: The predictive power of diagnostic tests and the effect of prevalence of illness. Psychiatry. 1983, 40: 569-
20.
go back to reference Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, Ceccato P, Connor SJ: An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa. Malar J. 2005, 4: 6-10.1186/1475-2875-4-6.PubMedCentralCrossRefPubMed Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, Ceccato P, Connor SJ: An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa. Malar J. 2005, 4: 6-10.1186/1475-2875-4-6.PubMedCentralCrossRefPubMed
21.
go back to reference Zhou G, Minakawa N, Githeko AK, Yan G: Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A. 2004, 101: 2375-10.1073/pnas.0308714100.PubMedCentralCrossRefPubMed Zhou G, Minakawa N, Githeko AK, Yan G: Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A. 2004, 101: 2375-10.1073/pnas.0308714100.PubMedCentralCrossRefPubMed
22.
go back to reference Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006, 439: 576-579. 10.1038/nature04503.CrossRefPubMed Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006, 439: 576-579. 10.1038/nature04503.CrossRefPubMed
23.
go back to reference Thomson M, Indeje M, Connor S, Dilley M, Ward N: Malaria early warning in Kenya and seasonal climate forecasts. Lancet. 2003, 362: 580-CrossRefPubMed Thomson M, Indeje M, Connor S, Dilley M, Ward N: Malaria early warning in Kenya and seasonal climate forecasts. Lancet. 2003, 362: 580-CrossRefPubMed
24.
go back to reference DaSilva J, Garanganga B, Teveredzi V, Marx SM, Mason SJ, Connor SJ: Improving epidemic malaria planning, preparedness and response in Southern Africa. Malar J. 2004, 3: 37-10.1186/1475-2875-3-37.PubMedCentralCrossRefPubMed DaSilva J, Garanganga B, Teveredzi V, Marx SM, Mason SJ, Connor SJ: Improving epidemic malaria planning, preparedness and response in Southern Africa. Malar J. 2004, 3: 37-10.1186/1475-2875-3-37.PubMedCentralCrossRefPubMed
25.
go back to reference Abeku TA, De Vlas SJ, Borsboom G, Tadege A, Gebreyesus Y, Gebreyohannes H, Alamirew D, Seifu A, Nagelkerke NJD, Habbema JDF: Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology. 2004, 128: 585-593. 10.1017/S0031182004005013.CrossRefPubMed Abeku TA, De Vlas SJ, Borsboom G, Tadege A, Gebreyesus Y, Gebreyohannes H, Alamirew D, Seifu A, Nagelkerke NJD, Habbema JDF: Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology. 2004, 128: 585-593. 10.1017/S0031182004005013.CrossRefPubMed
26.
go back to reference Kuhn K, Campbell-Lendrum D, Haines A, Cox J: Using Climate to Predict Infectious Disease Epidemics. 2005, Geneva: World Health Organization, 54- Kuhn K, Campbell-Lendrum D, Haines A, Cox J: Using Climate to Predict Infectious Disease Epidemics. 2005, Geneva: World Health Organization, 54-
Metadata
Title
Development and validation of climate and ecosystem-based early malaria epidemic prediction models in East Africa
Authors
Andrew K Githeko
Laban Ogallo
Martha Lemnge
Michael Okia
Ednah N Ototo
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2014
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-13-329

Other articles of this Issue 1/2014

Malaria Journal 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine