Skip to main content
Top
Published in: Journal of Translational Medicine 1/2012

Open Access 01-12-2012 | Research

Developing a nanoparticle test for prostate cancer scoring

Authors: Qun Huo, Sally A Litherland, Shannon Sullivan, Hillari Hallquist, David A Decker, Inoel Rivera-Ramirez

Published in: Journal of Translational Medicine | Issue 1/2012

Login to get access

Abstract

Background

Over-diagnosis and treatment of prostate cancer has been a major problem in prostate cancer care and management. Currently the most relevant prognostic factor to predict a patient's risk of death due to prostate cancer is the Gleason score of the biopsied tissue samples. However, pathological analysis is subjective, and the Gleason score is only a qualitative estimate of the cancer malignancy. Molecular biomarkers and diagnostic tests that can accurately predict prostate tumor aggressiveness are rather limited.

Method

We report here for the first time the development of a nanoparticle test that not only can distinguish prostate cancer from normal and benign conditions, but also has the potential to predict the aggressiveness of prostate cancer quantitatively. To conduct the test, a prostate tissue lysate sample is spiked into a blood serum or human IgG solution and the spiked sample is incubated with a citrate-protected gold nanoparticle solution. IgG is known to adsorb to citrate-protected gold nanoparticles to form a "protein corona" on the nanoparticle surface. From this study, we discovered that certain tumor-specific molecules can interact with IgG and change the adsorption behavior of IgG to the gold nanoparticles. This change is reflected in the nanoparticle size of the assay solution and detected by a dynamic light scattering technique. Assay data were analyzed by one-way ANOVA for multiple variant analysis, and using the Student t- test or nonparametric Mann-Whitney U- tests for pairwise analyses.

Results

An inverse, quantitative correlation of the average nanoparticle size of the assay solution with tumor status and histological diagnostic grading was observed from the nanoparticle test. IgG solutions spiked with prostate tumor tissue exhibit significantly smaller nanoparticle size than the solutions spiked with normal and benign tissues. The higher grade the tumor is, the smaller the nanoparticle size is. The test particularly revealed large differences among the intermediate Grade 2 tumors, and suggested the need to treat them differently.

Conclusion

Development of a new nanoparticle test may provide a quantitative measure of the prostate cancer aggressiveness. If validated in a larger study of patients with prostate cancer, this test could become a new diagnostic tool in conjunction with Gleason Score pathology diagnostics to better distinguish aggressive cancer from indolent tumor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Draisma G, Etzioni R, Tsodikow A, Mariotto A, Wever E, Gulati R, Feuer E, deKoning H: Lead time and overdiagnoses in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Int. 2009, 101: 374-383. 10.1093/jnci/djp001.CrossRef Draisma G, Etzioni R, Tsodikow A, Mariotto A, Wever E, Gulati R, Feuer E, deKoning H: Lead time and overdiagnoses in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Int. 2009, 101: 374-383. 10.1093/jnci/djp001.CrossRef
2.
go back to reference Dubbelman YD, Dohle GR, Schröder FH: Sexual function before and after radical retropubic prostatectomy: a systematic review of prognostic indicators for a successful outcome. Eur. Urology. 2006, 50: 711-720. 10.1016/j.eururo.2006.06.009.CrossRef Dubbelman YD, Dohle GR, Schröder FH: Sexual function before and after radical retropubic prostatectomy: a systematic review of prognostic indicators for a successful outcome. Eur. Urology. 2006, 50: 711-720. 10.1016/j.eururo.2006.06.009.CrossRef
3.
go back to reference Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q: A One-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc. 2008, 130: 2780-2782. 10.1021/ja711298b.CrossRefPubMed Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q: A One-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc. 2008, 130: 2780-2782. 10.1021/ja711298b.CrossRefPubMed
4.
go back to reference Jans H, Liu X, Austin L, Maes G, Huo Q: Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding study. Anal Chem. 2009, 81: 9425-9432. 10.1021/ac901822w.CrossRefPubMed Jans H, Liu X, Austin L, Maes G, Huo Q: Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding study. Anal Chem. 2009, 81: 9425-9432. 10.1021/ac901822w.CrossRefPubMed
5.
go back to reference Bogdanovic J, Colon J, Baker C, Huo Q: A label-free nanoparticle aggregation assay for protein complex/aggregate detection and analysis. Anal Biochem. 2010, 45: 96-102.CrossRef Bogdanovic J, Colon J, Baker C, Huo Q: A label-free nanoparticle aggregation assay for protein complex/aggregate detection and analysis. Anal Biochem. 2010, 45: 96-102.CrossRef
6.
go back to reference Huo Q: Protein complexes/aggregates as potential cancer biomarkers revealed by a nanoparticle aggregation assay. Colloids Surfaces B. 2010, 78: 259-265. 10.1016/j.colsurfb.2010.03.012.CrossRef Huo Q: Protein complexes/aggregates as potential cancer biomarkers revealed by a nanoparticle aggregation assay. Colloids Surfaces B. 2010, 78: 259-265. 10.1016/j.colsurfb.2010.03.012.CrossRef
7.
go back to reference Jaganathan S, Bogdanovic J, Huo Q, Turkson J: A functional nuclear epidermal growth factor receptor, Src and Stat3 heteromeric complex in pancreatic cancer cells. PLoS ONE. 2011, 6: e19605-10.1371/journal.pone.0019605. (Open Access)CrossRefPubMedPubMedCentral Jaganathan S, Bogdanovic J, Huo Q, Turkson J: A functional nuclear epidermal growth factor receptor, Src and Stat3 heteromeric complex in pancreatic cancer cells. PLoS ONE. 2011, 6: e19605-10.1371/journal.pone.0019605. (Open Access)CrossRefPubMedPubMedCentral
8.
go back to reference Huo Q, Cordero A, Bogdanovic J, Colon J, Baker CH, Goodison S, Pensky M: A facile nanoparticle immunoassay for cancer biomarker discovery. J Nanobiotechnology. 2011, 9: 20-10.1186/1477-3155-9-20. (Open Access)CrossRefPubMedPubMedCentral Huo Q, Cordero A, Bogdanovic J, Colon J, Baker CH, Goodison S, Pensky M: A facile nanoparticle immunoassay for cancer biomarker discovery. J Nanobiotechnology. 2011, 9: 20-10.1186/1477-3155-9-20. (Open Access)CrossRefPubMedPubMedCentral
9.
go back to reference Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine NBM. 2009, 5: 106-117. 10.1016/j.nano.2008.08.001.CrossRef Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine NBM. 2009, 5: 106-117. 10.1016/j.nano.2008.08.001.CrossRef
10.
go back to reference Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008, 105: 14265-14270. 10.1073/pnas.0805135105.CrossRefPubMedPubMedCentral Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008, 105: 14265-14270. 10.1073/pnas.0805135105.CrossRefPubMedPubMedCentral
11.
go back to reference Calzolai L, Franchini F, Gilliland D, Rossi F: Protein-nanoparticle interaction: identification of the ubiquitin-gold nanoparticle interaction site. Nano Lett. 2010, 10: 3101-3105. 10.1021/nl101746v.CrossRefPubMed Calzolai L, Franchini F, Gilliland D, Rossi F: Protein-nanoparticle interaction: identification of the ubiquitin-gold nanoparticle interaction site. Nano Lett. 2010, 10: 3101-3105. 10.1021/nl101746v.CrossRefPubMed
12.
go back to reference Mazaheri Y, Hricak H, Fine SW, Akin O, Shukla-Dave A, Ishill NM, Moskowitz CS, Grater JE, Reuter VE, Zakian KL, Touijer KA, Koutcher JA: Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology. 2009, 252: 449-457. 10.1148/radiol.2523081423.CrossRefPubMedPubMedCentral Mazaheri Y, Hricak H, Fine SW, Akin O, Shukla-Dave A, Ishill NM, Moskowitz CS, Grater JE, Reuter VE, Zakian KL, Touijer KA, Koutcher JA: Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology. 2009, 252: 449-457. 10.1148/radiol.2523081423.CrossRefPubMedPubMedCentral
13.
go back to reference Hermanson GT: Bioconjugate Techniques, 2nd ed.; Pierce Biotechnology. 2008, Thermo Fisher Scientific: Rockford, IL, Chapter 24: Hermanson GT: Bioconjugate Techniques, 2nd ed.; Pierce Biotechnology. 2008, Thermo Fisher Scientific: Rockford, IL, Chapter 24:
14.
go back to reference Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD: IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001, 410: 1107-1111. 10.1038/35074122.CrossRefPubMed Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD: IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001, 410: 1107-1111. 10.1038/35074122.CrossRefPubMed
15.
go back to reference Khatami M: "Yin" and "Yang" in inflammation: duality in innate immune cell function and tumorigenesis. Exp Opin Biol Ther. 2008, 8: 1461-1472. 10.1517/14712598.8.10.1461.CrossRef Khatami M: "Yin" and "Yang" in inflammation: duality in innate immune cell function and tumorigenesis. Exp Opin Biol Ther. 2008, 8: 1461-1472. 10.1517/14712598.8.10.1461.CrossRef
16.
go back to reference Brändlein S, Pohle T, Ruoff N, Wozniak E, Müller-Hermelink HK, Vollmers HP: Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res. 2003, 63: 7995-8005.PubMed Brändlein S, Pohle T, Ruoff N, Wozniak E, Müller-Hermelink HK, Vollmers HP: Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res. 2003, 63: 7995-8005.PubMed
Metadata
Title
Developing a nanoparticle test for prostate cancer scoring
Authors
Qun Huo
Sally A Litherland
Shannon Sullivan
Hillari Hallquist
David A Decker
Inoel Rivera-Ramirez
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2012
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-10-44

Other articles of this Issue 1/2012

Journal of Translational Medicine 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine