Skip to main content
Top
Published in: Familial Cancer 4/2009

01-12-2009

Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay

Authors: Hiromu Naruse, Noriko Ikawa, Kiyoshi Yamaguchi, Yusuke Nakamura, Masami Arai, Chikashi Ishioka, Kokichi Sugano, Kazuo Tamura, Naohiro Tomita, Nagahide Matsubara, Teruhiko Yoshida, Yoshihiro Moriya, Yoichi Furukawa

Published in: Familial Cancer | Issue 4/2009

Login to get access

Abstract

Lynch syndrome (hereditary non-polyposis colorectal cancer) is an inherited disease caused by germ-line mutation in mismatch repair genes such as MLH1, MSH2, and MSH6. The mutations include missense and nonsense mutations, small insertions and deletions, and gross genetic alterations including large deletions and duplications. In addition to these genetic changes, mutations in introns are also involved in the pathogenesis. However, it is sometimes difficult to interpret correctly the pathogenicity of variants in exons as well as introns. To evaluate the effect of splice-site mutations in two Lynch syndrome patients, we carried out a functional splicing assay using minigenes. Consequently, this assay showed that the mutation of c.1731+5G>A in MLH1 led to exon15 skipping, and that the mutation of c.211+1G>C in MSH2 created an activated cryptic splice-site 17-nucleotides upstream in exon1. These aberrant splicing patterns were not observed when wild type sequence was used for the assay. We also obtained concordant results by RT-PCR experiments with transcripts from the patients. Furthermore, additional functional splicing assays using two different intronic mutations described in earlier studies revealed splicing alterations that were in complete agreement with the reports. Therefore, functional splicing assay is helpful for evaluating the effects of genetic variants on splicing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lynch HT, de la Chapelle A (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36(11):801–818PubMed Lynch HT, de la Chapelle A (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36(11):801–818PubMed
3.
go back to reference Syngal S, Fox EA, Li C et al (1999) Interpretation of genetic test results for hereditary nonpolyposis colorectal cancer: implications for clinical predisposition testing. JAMA 282(3):281–282CrossRef Syngal S, Fox EA, Li C et al (1999) Interpretation of genetic test results for hereditary nonpolyposis colorectal cancer: implications for clinical predisposition testing. JAMA 282(3):281–282CrossRef
4.
go back to reference Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298CrossRefPubMed Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298CrossRefPubMed
5.
go back to reference Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96(3):307–310CrossRefPubMed Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96(3):307–310CrossRefPubMed
6.
go back to reference Tournier I, Vezain M, Martins A et al (2008) A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat 29(12):1412–1424CrossRefPubMed Tournier I, Vezain M, Martins A et al (2008) A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat 29(12):1412–1424CrossRefPubMed
7.
go back to reference Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94CrossRefPubMed Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94CrossRefPubMed
8.
go back to reference Reese MG, Eeckman FH, Kulp D et al (1997) Improved splice site detection in genie. J Comput Biol 4(3):311–323CrossRefPubMed Reese MG, Eeckman FH, Kulp D et al (1997) Improved splice site detection in genie. J Comput Biol 4(3):311–323CrossRefPubMed
9.
go back to reference Hebsgaard SM, Korning PG, Tolstrup N et al (1996) Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Res 24(17):3439–3452CrossRefPubMed Hebsgaard SM, Korning PG, Tolstrup N et al (1996) Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Res 24(17):3439–3452CrossRefPubMed
10.
go back to reference Nalla VK, Rogan PK (2005) Automated splicing mutation analysis by information theory. Hum Mutat 25(4):334–342CrossRefPubMed Nalla VK, Rogan PK (2005) Automated splicing mutation analysis by information theory. Hum Mutat 25(4):334–342CrossRefPubMed
11.
go back to reference Divina P, Kvitkovicova A, Buratti E et al (2009) Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet Jan 14 (Epub ahead of print) Divina P, Kvitkovicova A, Buratti E et al (2009) Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet Jan 14 (Epub ahead of print)
12.
go back to reference Sahashi K, Masuda A, Matsuura T et al (2007) In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5′ splice sites. Nucleic Acids Res 35(18):5995–6003CrossRefPubMed Sahashi K, Masuda A, Matsuura T et al (2007) In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5′ splice sites. Nucleic Acids Res 35(18):5995–6003CrossRefPubMed
13.
go back to reference Krüger S, Plaschke J, Jeske B et al (2003) Identification of six novel MSH2 and MLH1 germline mutations in HNPCC. Hum Mutat 21(4):445–446CrossRefPubMed Krüger S, Plaschke J, Jeske B et al (2003) Identification of six novel MSH2 and MLH1 germline mutations in HNPCC. Hum Mutat 21(4):445–446CrossRefPubMed
14.
go back to reference Casey G, Lindor NM, Papadopoulos N et al (2005) Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer. JAMA 293(7):799–809CrossRefPubMed Casey G, Lindor NM, Papadopoulos N et al (2005) Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer. JAMA 293(7):799–809CrossRefPubMed
15.
16.
go back to reference Lesser CF, Guthrie C (1993) Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262(5142):1982–1988CrossRefPubMed Lesser CF, Guthrie C (1993) Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262(5142):1982–1988CrossRefPubMed
17.
go back to reference Kandels-Lewis S, Seraphin B (1993) Involvement of U6 snRNA in 5′ splice site selection. Science 262(5142):2035–2039CrossRefPubMed Kandels-Lewis S, Seraphin B (1993) Involvement of U6 snRNA in 5′ splice site selection. Science 262(5142):2035–2039CrossRefPubMed
18.
go back to reference Roca X, Olson AJ, Rao AR et al (2008) Features of 5′-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 18(1):77–87CrossRefPubMed Roca X, Olson AJ, Rao AR et al (2008) Features of 5′-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 18(1):77–87CrossRefPubMed
19.
go back to reference Nakai K, Sakamoto H (1994) Construction of a novel database containing aberrant mutations of mammalian genes. Gene 141(2):171–177CrossRefPubMed Nakai K, Sakamoto H (1994) Construction of a novel database containing aberrant mutations of mammalian genes. Gene 141(2):171–177CrossRefPubMed
20.
go back to reference Krawczak M, Thomas NS, Hundrieser B et al (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28(2):150–158CrossRefPubMed Krawczak M, Thomas NS, Hundrieser B et al (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28(2):150–158CrossRefPubMed
21.
go back to reference Thanaraj TA, Robinson AJ (2000) Prediction of exact boundaries of exons. Brief Bioinform 1(4):343–356CrossRefPubMed Thanaraj TA, Robinson AJ (2000) Prediction of exact boundaries of exons. Brief Bioinform 1(4):343–356CrossRefPubMed
22.
go back to reference Carmel I, Tal S, Vig I et al (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10(5):828–840CrossRefPubMed Carmel I, Tal S, Vig I et al (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10(5):828–840CrossRefPubMed
23.
go back to reference Kerber RA, Neklason DW, Samowitz WS et al (2005) Frequency of familial colon cancer and hereditary nonpolyposis colorectal cancer (Lynch syndrome) in a large population database. Fam Cancer 4(3):239–244CrossRefPubMed Kerber RA, Neklason DW, Samowitz WS et al (2005) Frequency of familial colon cancer and hereditary nonpolyposis colorectal cancer (Lynch syndrome) in a large population database. Fam Cancer 4(3):239–244CrossRefPubMed
24.
go back to reference Barnetson RA, Tenesa A, Farrington SM et al (2006) Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Enql J Med 354(26):2751–2763CrossRef Barnetson RA, Tenesa A, Farrington SM et al (2006) Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Enql J Med 354(26):2751–2763CrossRef
25.
go back to reference Stella A, Wagner A, Shito K et al (2001) A nonsense mutation in MLH1 causes exon skipping in three unrelated HNPCC families. Cancer Res 61(19):7020–7024PubMed Stella A, Wagner A, Shito K et al (2001) A nonsense mutation in MLH1 causes exon skipping in three unrelated HNPCC families. Cancer Res 61(19):7020–7024PubMed
26.
go back to reference Pagenstecher C, Wehner M, Friedl W et al (2006) Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants. Hum Genet 119(1–2):9–22CrossRefPubMed Pagenstecher C, Wehner M, Friedl W et al (2006) Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants. Hum Genet 119(1–2):9–22CrossRefPubMed
27.
go back to reference Auclair J, Busine MP, Navarro C et al (2006) Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing. Hum Mutat 27(2):145–154CrossRefPubMed Auclair J, Busine MP, Navarro C et al (2006) Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing. Hum Mutat 27(2):145–154CrossRefPubMed
28.
go back to reference Vreeswijk MP, Kraan JN, van der Klift HM et al (2009) Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat 30(1):107–114CrossRefPubMed Vreeswijk MP, Kraan JN, van der Klift HM et al (2009) Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat 30(1):107–114CrossRefPubMed
29.
go back to reference Lastella P, Resta N, Miccolis I et al (2004) Site directed mutagenesis of hMLH1 exonic splicing enhancers does not correlate with splicing disruption. J Med Genet 41(6):e72CrossRefPubMed Lastella P, Resta N, Miccolis I et al (2004) Site directed mutagenesis of hMLH1 exonic splicing enhancers does not correlate with splicing disruption. J Med Genet 41(6):e72CrossRefPubMed
30.
go back to reference Sharp A, Pichert G, Lucassen A et al (2004) RNA analysis reveals splicing mutations and loss of expression defects in MLH1 and BRCA1. Hum Mutat 24(3):272CrossRefPubMed Sharp A, Pichert G, Lucassen A et al (2004) RNA analysis reveals splicing mutations and loss of expression defects in MLH1 and BRCA1. Hum Mutat 24(3):272CrossRefPubMed
Metadata
Title
Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay
Authors
Hiromu Naruse
Noriko Ikawa
Kiyoshi Yamaguchi
Yusuke Nakamura
Masami Arai
Chikashi Ishioka
Kokichi Sugano
Kazuo Tamura
Naohiro Tomita
Nagahide Matsubara
Teruhiko Yoshida
Yoshihiro Moriya
Yoichi Furukawa
Publication date
01-12-2009
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 4/2009
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-009-9280-6

Other articles of this Issue 4/2009

Familial Cancer 4/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine