Skip to main content
Top
Published in: Intensive Care Medicine 11/2009

01-11-2009 | Review

Determinants of regional ventilation and blood flow in the lung

Author: Robb W. Glenny

Published in: Intensive Care Medicine | Issue 11/2009

Login to get access

Abstract

The principles of ventilation and perfusion distribution in the lung form the foundation of pulmonary physiology and remain cornerstones in caring for critically ill patients. Due to improved imaging technologies with greater spatial resolution, our understanding of the determinants of local ventilation and blood flow have evolved over the past five decades. This review provides a brief history of how the concepts governing regional ventilation and perfusion have developed and presents the most recent studies that are shaping new perspectives on the determinants of ventilation and perfusion. How these new principles apply to acute lung injury and gas exchange in the intensive care unit (ICU) are reviewed.
Literature
1.
go back to reference Martin C, Cline F, Marshall H (1953) Lobar alveolar gas concentrations: effect of body position. J Clin Invest 32:617–621CrossRefPubMed Martin C, Cline F, Marshall H (1953) Lobar alveolar gas concentrations: effect of body position. J Clin Invest 32:617–621CrossRefPubMed
2.
go back to reference Rahn H, Sadoul P, Farhi L, Shapiro J (1956) Distribution of ventilation and perfusion in the lobes of the dog’s lung in the supine and erect position. J Appl Physiol 8:417–426PubMed Rahn H, Sadoul P, Farhi L, Shapiro J (1956) Distribution of ventilation and perfusion in the lobes of the dog’s lung in the supine and erect position. J Appl Physiol 8:417–426PubMed
3.
go back to reference Anthonisen NR, Milic-Emili J (1966) Distribution of pulmonary perfusion in erect man. J Appl Physiol 21:760–766PubMed Anthonisen NR, Milic-Emili J (1966) Distribution of pulmonary perfusion in erect man. J Appl Physiol 21:760–766PubMed
4.
go back to reference Ball WC Jr, Stewart PB, Newsham LG, Bates DV (1962) Regional pulmonary function studied with xenon 133. J Clin Invest 41:519–531CrossRefPubMed Ball WC Jr, Stewart PB, Newsham LG, Bates DV (1962) Regional pulmonary function studied with xenon 133. J Clin Invest 41:519–531CrossRefPubMed
5.
go back to reference Bryan AC, Bentivoglio LG, Beerel F, Macleish H, Zidulka A, Bates DV (1964) Factors affecting regional distribution of ventilation and perfusion in the lung. J Appl Physiol 19:395–402PubMed Bryan AC, Bentivoglio LG, Beerel F, Macleish H, Zidulka A, Bates DV (1964) Factors affecting regional distribution of ventilation and perfusion in the lung. J Appl Physiol 19:395–402PubMed
6.
go back to reference Hughes JM, Glazier JB, Maloney JE, West JB (1968) Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 4:58–72CrossRefPubMed Hughes JM, Glazier JB, Maloney JE, West JB (1968) Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 4:58–72CrossRefPubMed
7.
go back to reference Banister J, Torrance RW (1960) The effects of the tracheal pressure upon flow: pressure relations in the vascular bed of isolated lungs. Q J Exp Physiol Cogn Med Sci 45:352–367PubMed Banister J, Torrance RW (1960) The effects of the tracheal pressure upon flow: pressure relations in the vascular bed of isolated lungs. Q J Exp Physiol Cogn Med Sci 45:352–367PubMed
9.
go back to reference West JB (1977) Respiratory physiology: the essentials. Lippincott Williams & Wilkins, Baltimore West JB (1977) Respiratory physiology: the essentials. Lippincott Williams & Wilkins, Baltimore
10.
go back to reference Reed JH Jr, Wood EH (1970) Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 28:303–311PubMed Reed JH Jr, Wood EH (1970) Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 28:303–311PubMed
11.
go back to reference Beck KC, Rehder K (1986) Differences in regional vascular conductances in isolated dog lungs. J Appl Physiol 61:530–538PubMed Beck KC, Rehder K (1986) Differences in regional vascular conductances in isolated dog lungs. J Appl Physiol 61:530–538PubMed
12.
go back to reference Amis TC, Heather JD, Hughes JM, Jones HA, Rhodes CG (1979) Regional distribution of pulmonary ventilation and perfusion in the conscious dog [proceedings]. J Physiol 295:40PPubMed Amis TC, Heather JD, Hughes JM, Jones HA, Rhodes CG (1979) Regional distribution of pulmonary ventilation and perfusion in the conscious dog [proceedings]. J Physiol 295:40PPubMed
13.
go back to reference Bryan AC, Milic-Emili J, Pengelly D (1966) Effect of gravity on the distribution of pulmonary ventilation. J Appl Physiol 21:778–784PubMed Bryan AC, Milic-Emili J, Pengelly D (1966) Effect of gravity on the distribution of pulmonary ventilation. J Appl Physiol 21:778–784PubMed
14.
go back to reference Glaister DH (1970) Distribution of pulmonary blood flow and ventilation during forward (plus Gx) acceleration. J Appl Physiol 29:432–439PubMed Glaister DH (1970) Distribution of pulmonary blood flow and ventilation during forward (plus Gx) acceleration. J Appl Physiol 29:432–439PubMed
15.
go back to reference Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, Prisk GK (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 103:240–248CrossRefPubMed Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, Prisk GK (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 103:240–248CrossRefPubMed
16.
go back to reference Olson LE, Rodarte JR (1984) Regional differences in expansion in excised dog lung lobes. J Appl Physiol 57:1710–1714PubMed Olson LE, Rodarte JR (1984) Regional differences in expansion in excised dog lung lobes. J Appl Physiol 57:1710–1714PubMed
17.
go back to reference Hubmayr RD, Rodarte JR, Walters BJ, Tonelli FM (1987) Regional ventilation during spontaneous breathing and mechanical ventilation in dogs. J Appl Physiol 63:2467–2475PubMed Hubmayr RD, Rodarte JR, Walters BJ, Tonelli FM (1987) Regional ventilation during spontaneous breathing and mechanical ventilation in dogs. J Appl Physiol 63:2467–2475PubMed
18.
go back to reference Sprung J, Deschamps C, Hubmayr RD, Walters BJ, Rodarte JR (1989) In vivo regional diaphragm function in dogs. J Appl Physiol 67:655–662PubMed Sprung J, Deschamps C, Hubmayr RD, Walters BJ, Rodarte JR (1989) In vivo regional diaphragm function in dogs. J Appl Physiol 67:655–662PubMed
19.
go back to reference West JB (1962) Regional differences in gas exchange in the lung of erect man. J Appl Physiol 17:893–898PubMed West JB (1962) Regional differences in gas exchange in the lung of erect man. J Appl Physiol 17:893–898PubMed
20.
go back to reference Michels DB, West JB (1978) Distribution of pulmonary ventilation and perfusion during short periods of weightlessness. J Appl Physiol 45:987–998PubMed Michels DB, West JB (1978) Distribution of pulmonary ventilation and perfusion during short periods of weightlessness. J Appl Physiol 45:987–998PubMed
21.
go back to reference Harris RS, Schuster DP (2007) Visualizing lung function with positron emission tomography. J Appl Physiol 102:448–458CrossRefPubMed Harris RS, Schuster DP (2007) Visualizing lung function with positron emission tomography. J Appl Physiol 102:448–458CrossRefPubMed
22.
go back to reference Hopkins SR, Levin DL, Emami K, Kadlecek S, Yu J, Ishii M, Rizi RR (2007) Advances in magnetic resonance imaging of lung physiology. J Appl Physiol 102:1244–1254CrossRefPubMed Hopkins SR, Levin DL, Emami K, Kadlecek S, Yu J, Ishii M, Rizi RR (2007) Advances in magnetic resonance imaging of lung physiology. J Appl Physiol 102:1244–1254CrossRefPubMed
23.
go back to reference Petersson J, Sanchez-Crespo A, Larsson SA, Mure M (2007) Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol 102:468–476CrossRefPubMed Petersson J, Sanchez-Crespo A, Larsson SA, Mure M (2007) Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol 102:468–476CrossRefPubMed
24.
go back to reference Robertson HT, Hlastala MP (2007) Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol 102:1265–1272CrossRefPubMed Robertson HT, Hlastala MP (2007) Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol 102:1265–1272CrossRefPubMed
25.
go back to reference Lisbona R, Dean GW, Hakim TS (1987) Observations with SPECT on the normal regional distribution of pulmonary blood flow in gravity independent planes. J Nucl Med 28:1758–1762PubMed Lisbona R, Dean GW, Hakim TS (1987) Observations with SPECT on the normal regional distribution of pulmonary blood flow in gravity independent planes. J Nucl Med 28:1758–1762PubMed
26.
go back to reference Melsom MN, Flatebo T, Kramer-Johansen J, Aulie A, Sjaastad OV, Iversen PO, Nicolaysen G (1995) Both gravity and non-gravity dependent factors determine regional blood flow within the goat lung. Acta Physiol Scand 153:343–353CrossRefPubMed Melsom MN, Flatebo T, Kramer-Johansen J, Aulie A, Sjaastad OV, Iversen PO, Nicolaysen G (1995) Both gravity and non-gravity dependent factors determine regional blood flow within the goat lung. Acta Physiol Scand 153:343–353CrossRefPubMed
27.
go back to reference Glenny RW, Lamm WJ, Albert RK, Robertson HT (1991) Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol 71:620–629PubMed Glenny RW, Lamm WJ, Albert RK, Robertson HT (1991) Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol 71:620–629PubMed
28.
go back to reference Glenny R (2008) Counterpoint: gravity is not the major factor determining the distribution of blood flow in the healthy human lung. J Appl Physiol 104:1533–1535; discussion 1535–1536 Glenny R (2008) Counterpoint: gravity is not the major factor determining the distribution of blood flow in the healthy human lung. J Appl Physiol 104:1533–1535; discussion 1535–1536
29.
go back to reference Glenny RW, Bernard S, Robertson HT, Hlastala MP (1999) Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol 86:623–632PubMed Glenny RW, Bernard S, Robertson HT, Hlastala MP (1999) Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol 86:623–632PubMed
30.
go back to reference Glenny RW, Bernard SL, Robertson HT (2000) Pulmonary blood flow remains fractal down to the level of gas exchange. J Appl Physiol 89:742–748PubMed Glenny RW, Bernard SL, Robertson HT (2000) Pulmonary blood flow remains fractal down to the level of gas exchange. J Appl Physiol 89:742–748PubMed
31.
go back to reference Wagner WW Jr, Todoran TM, Tanabe N, Wagner TM, Tanner JA, Glenny RW, Presson RG Jr (1999) Pulmonary capillary perfusion: intra-alveolar fractal patterns and interalveolar independence. J Appl Physiol 86:825–831PubMed Wagner WW Jr, Todoran TM, Tanabe N, Wagner TM, Tanner JA, Glenny RW, Presson RG Jr (1999) Pulmonary capillary perfusion: intra-alveolar fractal patterns and interalveolar independence. J Appl Physiol 86:825–831PubMed
32.
go back to reference Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2009) Regional lung blood flow and ventilation in upright humans studied with quantitative SPECT. Respir Physiol Neurobiol 166:54–60CrossRefPubMed Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2009) Regional lung blood flow and ventilation in upright humans studied with quantitative SPECT. Respir Physiol Neurobiol 166:54–60CrossRefPubMed
33.
go back to reference Jones AT, Hansell DM, Evans TW (2001) Pulmonary perfusion in supine and prone positions: an electron-beam computed tomography study. J Appl Physiol 90:1342–1348CrossRefPubMed Jones AT, Hansell DM, Evans TW (2001) Pulmonary perfusion in supine and prone positions: an electron-beam computed tomography study. J Appl Physiol 90:1342–1348CrossRefPubMed
34.
go back to reference Burrowes KS, Tawhai MH (2006) Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir Physiol Neurobiol 154:515–523CrossRefPubMed Burrowes KS, Tawhai MH (2006) Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir Physiol Neurobiol 154:515–523CrossRefPubMed
35.
go back to reference Prisk GK, Guy HJ, Elliott AR, West JB (1994) Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 76:1730–1738PubMed Prisk GK, Guy HJ, Elliott AR, West JB (1994) Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 76:1730–1738PubMed
36.
go back to reference Montmerle S, Sundblad P, Linnarsson D (2005) Residual heterogeneity of intra- and interregional pulmonary perfusion in short-term microgravity. J Appl Physiol 98:2268–2277CrossRefPubMed Montmerle S, Sundblad P, Linnarsson D (2005) Residual heterogeneity of intra- and interregional pulmonary perfusion in short-term microgravity. J Appl Physiol 98:2268–2277CrossRefPubMed
37.
go back to reference Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2007) Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir Physiol Neurobiol 156:293–303CrossRefPubMed Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2007) Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir Physiol Neurobiol 156:293–303CrossRefPubMed
38.
go back to reference Glenny RW, Lamm WJ, Bernard SL, An D, Chornuk M, Pool SL, Wagner WW Jr, Hlastala MP, Robertson HT (2000) Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J Appl Physiol 89:1239–1248PubMed Glenny RW, Lamm WJ, Bernard SL, An D, Chornuk M, Pool SL, Wagner WW Jr, Hlastala MP, Robertson HT (2000) Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J Appl Physiol 89:1239–1248PubMed
39.
go back to reference Glenny RW (1992) Spatial correlation of regional pulmonary perfusion. J Appl Physiol 72:2378–2386PubMed Glenny RW (1992) Spatial correlation of regional pulmonary perfusion. J Appl Physiol 72:2378–2386PubMed
40.
go back to reference West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679CrossRefPubMed West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679CrossRefPubMed
41.
go back to reference Glenny RW, McKinney S, Robertson HT (1997) Spatial pattern of pulmonary blood flow distribution is stable over days. J Appl Physiol 82:902–907CrossRefPubMed Glenny RW, McKinney S, Robertson HT (1997) Spatial pattern of pulmonary blood flow distribution is stable over days. J Appl Physiol 82:902–907CrossRefPubMed
42.
go back to reference Glenny RW, Bernard SL, Luchtel DL, Neradilek B, Polissar NL (2007) The spatial–temporal redistribution of pulmonary blood flow with postnatal growth. J Appl Physiol 102:1281–1288CrossRefPubMed Glenny RW, Bernard SL, Luchtel DL, Neradilek B, Polissar NL (2007) The spatial–temporal redistribution of pulmonary blood flow with postnatal growth. J Appl Physiol 102:1281–1288CrossRefPubMed
43.
go back to reference Glenny R, Bernard S, Neradilek B, Polissar N (2007) Quantifying the genetic influence on mammalian vascular tree structure. Proc Natl Acad Sci USA 104:6858–6863CrossRefPubMed Glenny R, Bernard S, Neradilek B, Polissar N (2007) Quantifying the genetic influence on mammalian vascular tree structure. Proc Natl Acad Sci USA 104:6858–6863CrossRefPubMed
44.
go back to reference Glenny RW, Robertson HT (1998) Regional differences in the lung: a changing perspective on blood flow distribution. In: Hlastala MP, Robertson HT (eds) Complexity in structure and function of the lung. Dekker, New York, pp 461–481 Glenny RW, Robertson HT (1998) Regional differences in the lung: a changing perspective on blood flow distribution. In: Hlastala MP, Robertson HT (eds) Complexity in structure and function of the lung. Dekker, New York, pp 461–481
45.
go back to reference Wagner WW Jr (2008) Point:Counterpoint: gravity is/is not the major factor determining the distribution of blood flow in the human lung. J Appl Physiol 104:1537CrossRef Wagner WW Jr (2008) Point:Counterpoint: gravity is/is not the major factor determining the distribution of blood flow in the human lung. J Appl Physiol 104:1537CrossRef
46.
go back to reference Melsom MN, Kramer-Johansen J, Flatebo T, Muller C, Nicolaysen G (1997) Distribution of pulmonary ventilation and perfusion measured simultaneously in awake goats. Acta Physiol Scand 159:199–208CrossRefPubMed Melsom MN, Kramer-Johansen J, Flatebo T, Muller C, Nicolaysen G (1997) Distribution of pulmonary ventilation and perfusion measured simultaneously in awake goats. Acta Physiol Scand 159:199–208CrossRefPubMed
47.
go back to reference Altemeier WA, McKinney S, Glenny RW (2000) Fractal nature of regional ventilation distribution. J Appl Physiol 88:1551–1557PubMed Altemeier WA, McKinney S, Glenny RW (2000) Fractal nature of regional ventilation distribution. J Appl Physiol 88:1551–1557PubMed
48.
go back to reference Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261:L361–L369PubMed Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261:L361–L369PubMed
49.
go back to reference Treppo S, Mijailovich SM, Venegas JG (1997) Contributions of pulmonary perfusion and ventilation to heterogeneity in V(A)/Q measured by PET. J Appl Physiol 82:1163–1176PubMed Treppo S, Mijailovich SM, Venegas JG (1997) Contributions of pulmonary perfusion and ventilation to heterogeneity in V(A)/Q measured by PET. J Appl Physiol 82:1163–1176PubMed
50.
go back to reference Marcucci C, Nyhan D, Simon BA (2001) Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Physiol 90:421–430CrossRefPubMed Marcucci C, Nyhan D, Simon BA (2001) Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Physiol 90:421–430CrossRefPubMed
51.
go back to reference Kreck TC, Krueger MA, Altemeier WA, Sinclair SE, Robertson HT, Shade ED, Hildebrandt J, Lamm WJ, Frazer DA, Polissar NL, Hlastala MP (2001) Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J Appl Physiol 91:1741–1749PubMed Kreck TC, Krueger MA, Altemeier WA, Sinclair SE, Robertson HT, Shade ED, Hildebrandt J, Lamm WJ, Frazer DA, Polissar NL, Hlastala MP (2001) Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J Appl Physiol 91:1741–1749PubMed
52.
go back to reference Musch G, Layfield JD, Harris RS, Melo MF, Winkler T, Callahan RJ, Fischman AJ, Venegas JG (2002) Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol 93:1841–1851PubMed Musch G, Layfield JD, Harris RS, Melo MF, Winkler T, Callahan RJ, Fischman AJ, Venegas JG (2002) Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol 93:1841–1851PubMed
53.
go back to reference Petersson J, Sanchez-Crespo A, Rohdin M, Montmerle S, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Glenny RW, Mure M (2004) Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Physiol 96:1127–1136CrossRefPubMed Petersson J, Sanchez-Crespo A, Rohdin M, Montmerle S, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Glenny RW, Mure M (2004) Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Physiol 96:1127–1136CrossRefPubMed
54.
go back to reference Altemeier WA, Robertson HT, Glenny RW (1998) Pulmonary gas-exchange analysis by using simultaneous deposition of aerosolized and injected microspheres. J Appl Physiol 85:2344–2351PubMed Altemeier WA, Robertson HT, Glenny RW (1998) Pulmonary gas-exchange analysis by using simultaneous deposition of aerosolized and injected microspheres. J Appl Physiol 85:2344–2351PubMed
55.
go back to reference Prisk GK, Fine JM, Cooper TK, West JB (2006) Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol 101:439–447CrossRefPubMed Prisk GK, Fine JM, Cooper TK, West JB (2006) Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol 101:439–447CrossRefPubMed
56.
go back to reference Glenny RW, Robertson HT, Hlastala MP (2000) Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia. J Appl Physiol 89:2263–2267PubMed Glenny RW, Robertson HT, Hlastala MP (2000) Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia. J Appl Physiol 89:2263–2267PubMed
57.
go back to reference Melsom MN, Flatebo T, Nicolaysen G (2000) No apparent effect of nitric oxide on the local matching of pulmonary perfusion and ventilation in awake sheep. Acta Physiol Scand 168:361–370CrossRefPubMed Melsom MN, Flatebo T, Nicolaysen G (2000) No apparent effect of nitric oxide on the local matching of pulmonary perfusion and ventilation in awake sheep. Acta Physiol Scand 168:361–370CrossRefPubMed
58.
go back to reference Arai TJ, Henderson AC, Dubowitz DJ, Levin DL, Friedman PJ, Buxton RB, Prisk GK, Hopkins SR (2008) Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 106:1034–1035 Arai TJ, Henderson AC, Dubowitz DJ, Levin DL, Friedman PJ, Buxton RB, Prisk GK, Hopkins SR (2008) Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 106:1034–1035
59.
go back to reference Brett SJ, Chambers J, Bush A, Rosenthal M, Evans TW (1998) Pulmonary response of normal human subjects to inhaled vasodilator substances. Clin Sci (Lond) 95:621–627CrossRef Brett SJ, Chambers J, Bush A, Rosenthal M, Evans TW (1998) Pulmonary response of normal human subjects to inhaled vasodilator substances. Clin Sci (Lond) 95:621–627CrossRef
60.
go back to reference Frostell CG, Blomqvist H, Hedenstierna G, Lundberg J, Zapol WM (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78:427–435CrossRefPubMed Frostell CG, Blomqvist H, Hedenstierna G, Lundberg J, Zapol WM (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78:427–435CrossRefPubMed
61.
go back to reference Rocca GD, Passariello M, Coccia C, Costa MG, Di Marco P, Venuta F, Rendina EA, Pietropaoli P (2001) Inhaled nitric oxide administration during one-lung ventilation in patients undergoing thoracic surgery. J Cardiothorac Vasc Anesth 15:218–223CrossRefPubMed Rocca GD, Passariello M, Coccia C, Costa MG, Di Marco P, Venuta F, Rendina EA, Pietropaoli P (2001) Inhaled nitric oxide administration during one-lung ventilation in patients undergoing thoracic surgery. J Cardiothorac Vasc Anesth 15:218–223CrossRefPubMed
62.
go back to reference Wilson WC, Kapelanski DP, Benumof JL, Newhart JW 2nd, Johnson FW, Channick RN (1997) Inhaled nitric oxide (40 ppm) during one-lung ventilation, in the lateral decubitus position, does not decrease pulmonary vascular resistance or improve oxygenation in normal patients. J Cardiothorac Vasc Anesth 11:172–176CrossRefPubMed Wilson WC, Kapelanski DP, Benumof JL, Newhart JW 2nd, Johnson FW, Channick RN (1997) Inhaled nitric oxide (40 ppm) during one-lung ventilation, in the lateral decubitus position, does not decrease pulmonary vascular resistance or improve oxygenation in normal patients. J Cardiothorac Vasc Anesth 11:172–176CrossRefPubMed
63.
go back to reference Weibel E, Taylor C (1998) Functional design of the human lung for gas exchange. In: Fishman A (ed) Fishman’s pulmonary diseaes and disorders. McGraw-Hill, New York, pp 21–61 Weibel E, Taylor C (1998) Functional design of the human lung for gas exchange. In: Fishman A (ed) Fishman’s pulmonary diseaes and disorders. McGraw-Hill, New York, pp 21–61
64.
65.
go back to reference Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hypothesis of structure–function relationship. Proc Natl Acad Sci USA 88:10357–10361CrossRefPubMed Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hypothesis of structure–function relationship. Proc Natl Acad Sci USA 88:10357–10361CrossRefPubMed
66.
go back to reference Weibel ER, Sapoval B, Filoche M (2005) Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148:3–21CrossRefPubMed Weibel ER, Sapoval B, Filoche M (2005) Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148:3–21CrossRefPubMed
67.
go back to reference Hlastala MP, Lamm WJ, Karp A, Polissar NL, Starr IR, Glenny RW (2004) Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol 96:1589–1599CrossRefPubMed Hlastala MP, Lamm WJ, Karp A, Polissar NL, Starr IR, Glenny RW (2004) Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol 96:1589–1599CrossRefPubMed
68.
go back to reference Frank DU, Lowson SM, Roos CM, Rich GF (1996) Endotoxin alters hypoxic pulmonary vasoconstriction in isolated rat lungs. J Appl Physiol 81:1316–1322PubMed Frank DU, Lowson SM, Roos CM, Rich GF (1996) Endotoxin alters hypoxic pulmonary vasoconstriction in isolated rat lungs. J Appl Physiol 81:1316–1322PubMed
69.
go back to reference Ullrich R, Bloch KD, Ichinose F, Steudel W, Zapol WM (1999) Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin-challenged NOS2-deficient mice. J Clin Invest 104:1421–1429CrossRefPubMed Ullrich R, Bloch KD, Ichinose F, Steudel W, Zapol WM (1999) Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin-challenged NOS2-deficient mice. J Clin Invest 104:1421–1429CrossRefPubMed
70.
go back to reference Marshall BE (1989) Effects of anesthetics on pulmonary gas exchange. In: Stanley T, Sperry R (eds) Anesthesia and the lung. Kluwer, London, pp 117–125 Marshall BE (1989) Effects of anesthetics on pulmonary gas exchange. In: Stanley T, Sperry R (eds) Anesthesia and the lung. Kluwer, London, pp 117–125
71.
go back to reference Marshall BE, Hanson CW, Frasch F, Marshall C (1994) Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med 20:379–389CrossRefPubMed Marshall BE, Hanson CW, Frasch F, Marshall C (1994) Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med 20:379–389CrossRefPubMed
72.
go back to reference Tokics L, Hedenstierna G, Strandberg A, Brismar B, Lundquist H (1987) Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 66:157–167CrossRefPubMed Tokics L, Hedenstierna G, Strandberg A, Brismar B, Lundquist H (1987) Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 66:157–167CrossRefPubMed
73.
go back to reference Walther SM, Domino KB, Glenny RW, Hlastala MP (1997) Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture. Anesthesiology 87:335–342CrossRefPubMed Walther SM, Domino KB, Glenny RW, Hlastala MP (1997) Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture. Anesthesiology 87:335–342CrossRefPubMed
74.
go back to reference Walther SM, Domino KB, Glenny RW, Hlastala MP (1999) Positive end-expiratory pressure redistributes perfusion to dependent lung regions in supine but not in prone lambs. Crit Care Med 27:37–45CrossRefPubMed Walther SM, Domino KB, Glenny RW, Hlastala MP (1999) Positive end-expiratory pressure redistributes perfusion to dependent lung regions in supine but not in prone lambs. Crit Care Med 27:37–45CrossRefPubMed
75.
go back to reference Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41:242–255CrossRefPubMed Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41:242–255CrossRefPubMed
76.
go back to reference Rehder K, Sessler AD, Rodarte JR (1977) Regional intrapulmonary gas distribution in awake and anesthetized-paralyzed man. J Appl Physiol 42:391–402PubMed Rehder K, Sessler AD, Rodarte JR (1977) Regional intrapulmonary gas distribution in awake and anesthetized-paralyzed man. J Appl Physiol 42:391–402PubMed
77.
go back to reference Reber A, Engberg G, Sporre B, Kviele L, Rothen HU, Wegenius G, Nylund U, Hedenstierna G (1996) Volumetric analysis of aeration in the lungs during general anaesthesia. Br J Anaesth 76:760–766PubMed Reber A, Engberg G, Sporre B, Kviele L, Rothen HU, Wegenius G, Nylund U, Hedenstierna G (1996) Volumetric analysis of aeration in the lungs during general anaesthesia. Br J Anaesth 76:760–766PubMed
78.
79.
go back to reference Alsaghir AH, Martin CM (2008) Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis. Crit Care Med 36:603–609CrossRefPubMed Alsaghir AH, Martin CM (2008) Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis. Crit Care Med 36:603–609CrossRefPubMed
80.
go back to reference Sud S, Sud M, Friedrich JO, Adhikari NK (2008) Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ 178:1153–1161PubMed Sud S, Sud M, Friedrich JO, Adhikari NK (2008) Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ 178:1153–1161PubMed
81.
go back to reference Mure M, Domino KB, Lindahl SG, Hlastala MP, Altemeier WA, Glenny RW (2000) Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol 88:1076–1083PubMed Mure M, Domino KB, Lindahl SG, Hlastala MP, Altemeier WA, Glenny RW (2000) Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol 88:1076–1083PubMed
82.
go back to reference Richter T, Bellani G, Scott Harris R, Vidal Melo MF, Winkler T, Venegas JG, Musch G (2005) Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med 172:480–487CrossRefPubMed Richter T, Bellani G, Scott Harris R, Vidal Melo MF, Winkler T, Venegas JG, Musch G (2005) Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med 172:480–487CrossRefPubMed
Metadata
Title
Determinants of regional ventilation and blood flow in the lung
Author
Robb W. Glenny
Publication date
01-11-2009
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 11/2009
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-009-1649-3

Other articles of this Issue 11/2009

Intensive Care Medicine 11/2009 Go to the issue