Skip to main content
Top
Published in: Endocrine 2/2016

01-11-2016 | Original Article

Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice

Authors: Xiaoquan Xiong, Qing Li, Wei Cui, Zu-Hua Gao, Jun-Li Liu

Published in: Endocrine | Issue 2/2016

Login to get access

Abstract

Reg family proteins have long been implicated in islet β-cell proliferation, survival, and regeneration. In our previous study, we reported that Reg3β overexpression did not increase islet growth but prevented streptozotocin-induced islet damage by inducing specific genes. In order to explore its role in type 2 diabetes (T2D), we established high-fat diet (HFD)-induced obesity and diabetes in RIP-I/Reg3β mice. Glucose and insulin tolerance tests, immunofluorescence for insulin, eIF2α, and GLUT2 in islets, Western blots on phosphorylated AMPKα and hepatic histology were performed. Both RIP-I/Reg3β and wild-type mice gained weight rapidly and became hyperglycemic after 10 weeks on the HFD. However, the transgenic mice exhibited more significant acceleration in blood glucose levels, further deterioration of glucose intolerance and insulin resistance, and a lower intensity of insulin staining. Immunofluorescence revealed similar magnitude of islet compensation to a wild-type HFD. The normal GLUT2 distribution in the transgenic β-cells was disrupted and the staining was obviously diminished on the cell membrane. HFD feeding also caused a further decrease in the level of AMPKα phosphorylation in the transgenic islets. Our results suggest that unlike its protective effect against T1D, overexpressed Reg3β was unable to protect the β-cells against HFD-induced damage.
Appendix
Available only for authorised users
Literature
1.
go back to reference K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura, Y. Tochino, H. Okamoto, A novel gene activated in regenerating islets. J. Biol. Chem. 263(5), 2111–2114 (1988)PubMed K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura, Y. Tochino, H. Okamoto, A novel gene activated in regenerating islets. J. Biol. Chem. 263(5), 2111–2114 (1988)PubMed
2.
go back to reference T. Watanabe, H. Yonekura, K. Terazono, H. Yamamoto, H. Okamoto, Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues. The reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene. J. Biol. Chem. 265(13), 7432–7439 (1990)PubMed T. Watanabe, H. Yonekura, K. Terazono, H. Yamamoto, H. Okamoto, Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues. The reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene. J. Biol. Chem. 265(13), 7432–7439 (1990)PubMed
3.
go back to reference H. Miyashita, K. Nakagawara, M. Mori, Y. Narushima, N. Noguchi, S. Moriizumi, S. Takasawa, H. Yonekura, T. Takeuchi, H. Okamoto, Human REG family genes are tandemly ordered in a 95-kilobase region of chromosome 2p12. FEBS Lett. 377(3), 429–433 (1995)PubMedCrossRef H. Miyashita, K. Nakagawara, M. Mori, Y. Narushima, N. Noguchi, S. Moriizumi, S. Takasawa, H. Yonekura, T. Takeuchi, H. Okamoto, Human REG family genes are tandemly ordered in a 95-kilobase region of chromosome 2p12. FEBS Lett. 377(3), 429–433 (1995)PubMedCrossRef
4.
go back to reference Y. Narushima, M. Unno, K. Nakagawara, M. Mori, H. Miyashita, Y. Suzuki, N. Noguchi, S. Takasawa, T. Kumagai, H. Yonekura, H. Okamoto, Structure, chromosomal localization and expression of mouse genes encoding type III Reg, RegIII alpha, RegIII beta, RegIII γ. Gene 185(2), 159–168 (1997)PubMedCrossRef Y. Narushima, M. Unno, K. Nakagawara, M. Mori, H. Miyashita, Y. Suzuki, N. Noguchi, S. Takasawa, T. Kumagai, H. Yonekura, H. Okamoto, Structure, chromosomal localization and expression of mouse genes encoding type III Reg, RegIII alpha, RegIII beta, RegIII γ. Gene 185(2), 159–168 (1997)PubMedCrossRef
5.
go back to reference M. Abe, K. Nata, T. Akiyama, N.J. Shervani, S. Kobayashi, T. Tomioka-Kumagai, S. Ito, S. Takasawa, H. Okamoto, Identification of a novel Reg family gene, Reg IIIδ, and mapping of all three types of Reg family gene in a 75 kilobase mouse genomic region. Gene 246(1–2), 111–122 (2000)PubMedCrossRef M. Abe, K. Nata, T. Akiyama, N.J. Shervani, S. Kobayashi, T. Tomioka-Kumagai, S. Ito, S. Takasawa, H. Okamoto, Identification of a novel Reg family gene, Reg IIIδ, and mapping of all three types of Reg family gene in a 75 kilobase mouse genomic region. Gene 246(1–2), 111–122 (2000)PubMedCrossRef
6.
go back to reference H. Okamoto, The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic beta-cells. J. Hepatobiliary Pancreat. Surg. 6(3), 254–262 (1999)PubMedCrossRef H. Okamoto, The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic beta-cells. J. Hepatobiliary Pancreat. Surg. 6(3), 254–262 (1999)PubMedCrossRef
7.
go back to reference Q. Li, X. Xiong, J.L. Liu, The contribution of Reg family proteins to cell growth and survival in pancreatic islets, in The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol. 654, ed. by M.S. Islam (Springer, Berlin, 2014), pp. 955–988 Q. Li, X. Xiong, J.L. Liu, The contribution of Reg family proteins to cell growth and survival in pancreatic islets, in The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol. 654, ed. by M.S. Islam (Springer, Berlin, 2014), pp. 955–988
8.
go back to reference J.L. Liu, W. Cui, B. Li, Y. Lu, Possible roles of reg family proteins in pancreatic islet cell growth. Endocr. Metab. Immune Disord. Drug Targets 8(1), 1–10 (2008)PubMedCrossRef J.L. Liu, W. Cui, B. Li, Y. Lu, Possible roles of reg family proteins in pancreatic islet cell growth. Endocr. Metab. Immune Disord. Drug Targets 8(1), 1–10 (2008)PubMedCrossRef
9.
go back to reference L. Christa, F. Carnot, M.T. Simon, F. Levavasseur, M.G. Stinnakre, C. Lasserre, D. Thepot, B. Clement, E. Devinoy, C. Brechot, HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am. J. Physiol. 271(6 Pt 1), G993–G1002 (1996)PubMed L. Christa, F. Carnot, M.T. Simon, F. Levavasseur, M.G. Stinnakre, C. Lasserre, D. Thepot, B. Clement, E. Devinoy, C. Brechot, HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am. J. Physiol. 271(6 Pt 1), G993–G1002 (1996)PubMed
10.
go back to reference H.T. Lieu, F. Batteux, M.T. Simon, A. Cortes, C. Nicco, F. Zavala, A. Pauloin, J.G. Tralhao, O. Soubrane, B. Weill, C. Brechot, L. Christa, HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice. Hepatology 42(3), 618–626 (2005)PubMedCrossRef H.T. Lieu, F. Batteux, M.T. Simon, A. Cortes, C. Nicco, F. Zavala, A. Pauloin, J.G. Tralhao, O. Soubrane, B. Weill, C. Brechot, L. Christa, HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice. Hepatology 42(3), 618–626 (2005)PubMedCrossRef
11.
go back to reference S. Takasawa, T. Ikeda, T. Akiyama, K. Nata, K. Nakagawa, N.J. Shervani, N. Noguchi, S. Murakami-Kawaguchi, A. Yamauchi, I. Takahashi, T. Tomioka-Kumagai, H. Okamoto, Cyclin D1 activation through ATF-2 in Reg-induced pancreatic beta-cell regeneration. FEBS Lett. 580(2), 585–591 (2006)PubMedCrossRef S. Takasawa, T. Ikeda, T. Akiyama, K. Nata, K. Nakagawa, N.J. Shervani, N. Noguchi, S. Murakami-Kawaguchi, A. Yamauchi, I. Takahashi, T. Tomioka-Kumagai, H. Okamoto, Cyclin D1 activation through ATF-2 in Reg-induced pancreatic beta-cell regeneration. FEBS Lett. 580(2), 585–591 (2006)PubMedCrossRef
12.
go back to reference L. Rosenberg, M. Lipsett, J.W. Yoon, M. Prentki, R. Wang, H.S. Jun, G.L. Pittenger, D. Taylor-Fishwick, A.I. Vinik, A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6 J mice. Ann. Surg. 240(5), 875–884 (2004)PubMedPubMedCentralCrossRef L. Rosenberg, M. Lipsett, J.W. Yoon, M. Prentki, R. Wang, H.S. Jun, G.L. Pittenger, D. Taylor-Fishwick, A.I. Vinik, A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6 J mice. Ann. Surg. 240(5), 875–884 (2004)PubMedPubMedCentralCrossRef
13.
go back to reference D.A. Taylor-Fishwick, A. Bowman, N. Hamblet, P. Bernard, D.M. Harlan, A.I. Vinik, Islet neogenesis associated protein transgenic mice are resistant to hyperglycemia induced by streptozotocin. J. Endocrinol. 190(3), 729–737 (2006). doi:10.1677/joe.1.06698 PubMedCrossRef D.A. Taylor-Fishwick, A. Bowman, N. Hamblet, P. Bernard, D.M. Harlan, A.I. Vinik, Islet neogenesis associated protein transgenic mice are resistant to hyperglycemia induced by streptozotocin. J. Endocrinol. 190(3), 729–737 (2006). doi:10.​1677/​joe.​1.​06698 PubMedCrossRef
14.
go back to reference T.J. Chang, J.R. Weaver, A. Bowman, K. Leone, R. Raab, A.I. Vinik, G.L. Pittenger, D.A. Taylor-Fishwick, Targeted expression of INGAP to beta cells enhances glucose tolerance and confers resistance to streptozotocin-induced hyperglycemia. Mol. Cell. Endocrinol. 335(2), 104–109 (2011). doi:10.1016/j.mce.2010.12.026 PubMedCrossRef T.J. Chang, J.R. Weaver, A. Bowman, K. Leone, R. Raab, A.I. Vinik, G.L. Pittenger, D.A. Taylor-Fishwick, Targeted expression of INGAP to beta cells enhances glucose tolerance and confers resistance to streptozotocin-induced hyperglycemia. Mol. Cell. Endocrinol. 335(2), 104–109 (2011). doi:10.​1016/​j.​mce.​2010.​12.​026 PubMedCrossRef
17.
go back to reference W. Cui, K. De Jesus, H. Zhao, S. Takasawa, B. Shi, C.B. Srikant, J.L. Liu, Overexpression of Reg3alpha increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells. Growth Factors 27(3), 195–202 (2009). doi:10.1080/08977190902863548 PubMedCrossRef W. Cui, K. De Jesus, H. Zhao, S. Takasawa, B. Shi, C.B. Srikant, J.L. Liu, Overexpression of Reg3alpha increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells. Growth Factors 27(3), 195–202 (2009). doi:10.​1080/​0897719090286354​8 PubMedCrossRef
18.
go back to reference C. Lasserre, M.T. Simon, H. Ishikawa, S. Diriong, V.C. Nguyen, L. Christa, P. Vernier, C. Brechot, Structural organization and chromosomal localization of a human gene (HIP/PAP) encoding a C-type lectin overexpressed in primary liver cancer. Eur. J. Biochem. 224(1), 29–38 (1994)PubMedCrossRef C. Lasserre, M.T. Simon, H. Ishikawa, S. Diriong, V.C. Nguyen, L. Christa, P. Vernier, C. Brechot, Structural organization and chromosomal localization of a human gene (HIP/PAP) encoding a C-type lectin overexpressed in primary liver cancer. Eur. J. Biochem. 224(1), 29–38 (1994)PubMedCrossRef
19.
go back to reference J.C. Hartupee, H. Zhang, M.F. Bonaldo, M.B. Soares, B.K. Dieckgraefe, Isolation and characterization of a cDNA encoding a novel member of the human regenerating protein family: reg IV. Biochim. Biophys. Acta 1518(3), 287–293 (2001)PubMedCrossRef J.C. Hartupee, H. Zhang, M.F. Bonaldo, M.B. Soares, B.K. Dieckgraefe, Isolation and characterization of a cDNA encoding a novel member of the human regenerating protein family: reg IV. Biochim. Biophys. Acta 1518(3), 287–293 (2001)PubMedCrossRef
20.
go back to reference R. Graf, M. Schiesser, A. Lussi, P. Went, G.A. Scheele, D. Bimmler, Coordinate regulation of secretory stress proteins (PSP/reg, PAP I, PAP II, and PAP III) in the rat exocrine pancreas during experimental acute pancreatitis. J. Surg. Res. 105(2), 136–144 (2002)PubMedCrossRef R. Graf, M. Schiesser, A. Lussi, P. Went, G.A. Scheele, D. Bimmler, Coordinate regulation of secretory stress proteins (PSP/reg, PAP I, PAP II, and PAP III) in the rat exocrine pancreas during experimental acute pancreatitis. J. Surg. Res. 105(2), 136–144 (2002)PubMedCrossRef
22.
23.
go back to reference Y. Wang, C. Jacovetti, B. Li, T. Siddique, X. Xiong, H. Yin, M. Wang, H. Zhao, J.L. Liu, Coordinated age-dependent and pancreatic-specific expression of mouse Reg2Reg3alpha, and Reg3beta genes. Growth Factors 29(2–3), 72–81 (2011). doi:10.3109/08977194.2011.562866 PubMedCrossRef Y. Wang, C. Jacovetti, B. Li, T. Siddique, X. Xiong, H. Yin, M. Wang, H. Zhao, J.L. Liu, Coordinated age-dependent and pancreatic-specific expression of mouse Reg2Reg3alpha, and Reg3beta genes. Growth Factors 29(2–3), 72–81 (2011). doi:10.​3109/​08977194.​2011.​562866 PubMedCrossRef
25.
go back to reference N. Baeza, D. Sanchez, L. Christa, O. Guy-Crotte, B. Vialettes, C. Figarella, Pancreatitis-associated protein (HIP/PAP) gene expression is upregulated in NOD mice pancreas and localized in exocrine tissue during diabetes. Digestion 64(4), 233–239 (2001)PubMedCrossRef N. Baeza, D. Sanchez, L. Christa, O. Guy-Crotte, B. Vialettes, C. Figarella, Pancreatitis-associated protein (HIP/PAP) gene expression is upregulated in NOD mice pancreas and localized in exocrine tissue during diabetes. Digestion 64(4), 233–239 (2001)PubMedCrossRef
26.
go back to reference X. Xiong, X. Wang, B. Li, S. Chowdhury, Y. Lu, C.B. Srikant, G. Ning, J.L. Liu, Pancreatic islet-specific overexpression of Reg3β protein induced the expression of pro-islet genes and protected mice against streptozotocin-induced diabetes. Am. J. Physiol. Endocrinol. Metab. 300, E669–E680 (2011)PubMedCrossRef X. Xiong, X. Wang, B. Li, S. Chowdhury, Y. Lu, C.B. Srikant, G. Ning, J.L. Liu, Pancreatic islet-specific overexpression of Reg3β protein induced the expression of pro-islet genes and protected mice against streptozotocin-induced diabetes. Am. J. Physiol. Endocrinol. Metab. 300, E669–E680 (2011)PubMedCrossRef
27.
go back to reference Y. Lu, P.L. Herrera, Y. Guo, D. Sun, Z. Tang, D. LeRoith, J.L. Liu, Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes 53(12), 3131–3141 (2004)PubMedCrossRef Y. Lu, P.L. Herrera, Y. Guo, D. Sun, Z. Tang, D. LeRoith, J.L. Liu, Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes 53(12), 3131–3141 (2004)PubMedCrossRef
29.
go back to reference D.R. Clemmons, A.C. Moses, A. Sommer, W. Jacobson, A.D. Rogol, M.R. Sleevi, G. Allan, Rh/IGF-I/rhIGFBP-3 administration to patients with type 2 diabetes mellitus reduces insulin requirements while also lowering fasting glucose. Growth Horm. IGF Res. 15(4), 265–274 (2005)PubMedCrossRef D.R. Clemmons, A.C. Moses, A. Sommer, W. Jacobson, A.D. Rogol, M.R. Sleevi, G. Allan, Rh/IGF-I/rhIGFBP-3 administration to patients with type 2 diabetes mellitus reduces insulin requirements while also lowering fasting glucose. Growth Horm. IGF Res. 15(4), 265–274 (2005)PubMedCrossRef
30.
go back to reference P. Zhang, B. McGrath, S. Li, A. Frank, F. Zambito, J. Reinert, M. Gannon, K. Ma, K. McNaughton, D.R. Cavener, The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22(11), 3864–3874 (2002)PubMedPubMedCentralCrossRef P. Zhang, B. McGrath, S. Li, A. Frank, F. Zambito, J. Reinert, M. Gannon, K. Ma, K. McNaughton, D.R. Cavener, The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22(11), 3864–3874 (2002)PubMedPubMedCentralCrossRef
31.
go back to reference C.R. Lindholm, R.L. Ertel, J.D. Bauwens, E.G. Schmuck, J.D. Mulligan, K.W. Saupe, A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J. Physiol. Biochem. 69(2), 165–175 (2013). doi:10.1007/s13105-012-0199-2 PubMedCrossRef C.R. Lindholm, R.L. Ertel, J.D. Bauwens, E.G. Schmuck, J.D. Mulligan, K.W. Saupe, A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J. Physiol. Biochem. 69(2), 165–175 (2013). doi:10.​1007/​s13105-012-0199-2 PubMedCrossRef
33.
go back to reference R. Jacob, E. Barrett, G. Plewe, K.D. Fagin, R.S. Sherwin, Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin. J. Clin. Invest. 83(5), 1717–1723 (1989)PubMedPubMedCentralCrossRef R. Jacob, E. Barrett, G. Plewe, K.D. Fagin, R.S. Sherwin, Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin. J. Clin. Invest. 83(5), 1717–1723 (1989)PubMedPubMedCentralCrossRef
34.
37.
go back to reference S.G. Laychock, J. Duzen, C.O. Simpkins, Metallothionein induction in islets of Langerhans and insulinoma cells. Mol. Cell. Endocrinol. 165(1–2), 179–187 (2000)PubMedCrossRef S.G. Laychock, J. Duzen, C.O. Simpkins, Metallothionein induction in islets of Langerhans and insulinoma cells. Mol. Cell. Endocrinol. 165(1–2), 179–187 (2000)PubMedCrossRef
38.
go back to reference X. Li, H. Chen, P.N. Epstein, Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic {beta}-cells. Diabetes 55(6), 1592–1604 (2006)PubMedCrossRef X. Li, H. Chen, P.N. Epstein, Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic {beta}-cells. Diabetes 55(6), 1592–1604 (2006)PubMedCrossRef
39.
go back to reference C.L. Acerini, C.M. Patton, M.O. Savage, A. Kernell, O. Westphal, D.B. Dunger, Randomised placebo-controlled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. The Lancet 350(9086), 1199–1204 (1997)CrossRef C.L. Acerini, C.M. Patton, M.O. Savage, A. Kernell, O. Westphal, D.B. Dunger, Randomised placebo-controlled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. The Lancet 350(9086), 1199–1204 (1997)CrossRef
40.
go back to reference B. Viollet, L. Lantier, J. Devin-Leclerc, S. Hebrard, C. Amouyal, R. Mounier, M. Foretz, F. Andreelli, Targeting the AMPK pathway for the treatment of type 2 diabetes. Front. Biosci. J. Virtual Libr. 14, 3380–3400 (2009)CrossRef B. Viollet, L. Lantier, J. Devin-Leclerc, S. Hebrard, C. Amouyal, R. Mounier, M. Foretz, F. Andreelli, Targeting the AMPK pathway for the treatment of type 2 diabetes. Front. Biosci. J. Virtual Libr. 14, 3380–3400 (2009)CrossRef
Metadata
Title
Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice
Authors
Xiaoquan Xiong
Qing Li
Wei Cui
Zu-Hua Gao
Jun-Li Liu
Publication date
01-11-2016
Publisher
Springer US
Published in
Endocrine / Issue 2/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-0998-2

Other articles of this Issue 2/2016

Endocrine 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine