Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2009

01-03-2009 | Original Article

Detection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PET

Authors: Reiko Kameyama, Yuka Yamamoto, Kunihiko Izuishi, Ryusuke Takebayashi, Masanobu Hagiike, Makiko Murota, Masato Kaji, Reiji Haba, Yoshihiro Nishiyama

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2009

Login to get access

Abstract

Purpose

We prospectively investigated the feasibility of 3′-deoxy-3′-18F-fluorothymidine (FLT) positron emission tomography (PET) for the detection of gastric cancer, in comparison with 2-deoxy-2-18F-fluoro-d-glucose (FDG) PET, and determined the degree of correlation between the two radiotracers and proliferative activity as indicated by Ki-67 index.

Methods

A total of 21 patients with newly diagnosed advanced gastric cancer were examined with FLT PET and FDG PET. Tumour lesions were identified as areas of focally increased uptake, exceeding that of surrounding normal tissue. For semiquantitative analysis, the maximal standardized uptake value (SUV) was calculated.

Results

For detection of advanced gastric cancer, the sensitivities of FLT PET and FDG PET were 95.2% and 95.0%, respectively. The mean (±SD) SUV for FLT (7.0 ± 3.3) was significantly lower than that for FDG (9.4 ± 6.3 p < 0.05). The mean FLT SUV and FDG SUV in nonintestinal tumours were higher than in intestinal tumours, although the difference was not statistically significant. The mean (±SD) FLT SUV in poorly differentiated tumours (8.5 ± 3.5) was significantly higher than that in well and moderately differentiated tumours (5.3 ± 2.1; p < 0.04). The mean FDG SUV in poorly differentiated tumours was higher than in well and moderately differentiated tumours, although the difference was not statistically significant. There was no significant correlation between Ki-67 index and either FLT SUV or FDG SUV.

Conclusion

FLT PET showed as high a sensitivity as FDG PET for the detection of gastric cancer, although uptake of FLT in gastric cancer was significantly lower than that of FDG.
Literature
1.
go back to reference Hustinx R, Bénard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med 2002;32:35–46.PubMedCrossRef Hustinx R, Bénard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med 2002;32:35–46.PubMedCrossRef
2.
go back to reference Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol 2001;2:157–64.PubMedCrossRef Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol 2001;2:157–64.PubMedCrossRef
3.
go back to reference Yeung HW, Macapinlac H, Karpeh M, Finn RD, Larson SM. Accuracy of FDG-PET in gastric cancer. Preliminary experience. Clin Positron Imaging 1998;1:213–21.PubMedCrossRef Yeung HW, Macapinlac H, Karpeh M, Finn RD, Larson SM. Accuracy of FDG-PET in gastric cancer. Preliminary experience. Clin Positron Imaging 1998;1:213–21.PubMedCrossRef
4.
go back to reference Stahl A, Ott K, Weber WA, Becker K, Link T, Siewert JR. FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging 2003;30:288–95.PubMed Stahl A, Ott K, Weber WA, Becker K, Link T, Siewert JR. FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging 2003;30:288–95.PubMed
5.
go back to reference Mochiki E, Kuwano H, Katoh H, Asao T, Oriuchi N, Endo K. Evaluation of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography for gastric cancer. World J Surg 2004;28:247–53.PubMedCrossRef Mochiki E, Kuwano H, Katoh H, Asao T, Oriuchi N, Endo K. Evaluation of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography for gastric cancer. World J Surg 2004;28:247–53.PubMedCrossRef
6.
go back to reference Chen J, Cheong JH, Yun MJ, Kim J, Lim JS, Hyung WJ. Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer 2005;103:2383–90.PubMedCrossRef Chen J, Cheong JH, Yun MJ, Kim J, Lim JS, Hyung WJ. Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer 2005;103:2383–90.PubMedCrossRef
7.
go back to reference Yamada A, Oguchi K, Fukushima M, Imai Y, Kadoya M. Evaluation of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in gastric carcinoma: relation to histological subtypes, depth of tumor invasion, and glucose transporter-1 expression. Ann Nucl Med 2006;20:597–604.PubMedCrossRef Yamada A, Oguchi K, Fukushima M, Imai Y, Kadoya M. Evaluation of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in gastric carcinoma: relation to histological subtypes, depth of tumor invasion, and glucose transporter-1 expression. Ann Nucl Med 2006;20:597–604.PubMedCrossRef
8.
go back to reference Mukai K, Ishida Y, Okajima K, Isozaki H, Morimoto T, Nishiyama S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer 2006;9:192–6.PubMedCrossRef Mukai K, Ishida Y, Okajima K, Isozaki H, Morimoto T, Nishiyama S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer 2006;9:192–6.PubMedCrossRef
9.
go back to reference Tian J, Chen L, Wei B, Shao M, Ding Y, Yao S. The value of vesicant 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in gastric malignancies. Nucl Med Commun 2004;25:825–31.PubMedCrossRef Tian J, Chen L, Wei B, Shao M, Ding Y, Yao S. The value of vesicant 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in gastric malignancies. Nucl Med Commun 2004;25:825–31.PubMedCrossRef
10.
go back to reference Yoshioka T, Yamaguchi K, Kubota K, Saginoya T, Yamazaki T, Ido T. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med 2003;44:690–9.PubMed Yoshioka T, Yamaguchi K, Kubota K, Saginoya T, Yamazaki T, Ido T. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med 2003;44:690–9.PubMed
11.
go back to reference Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61–77.PubMed Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61–77.PubMed
12.
go back to reference Koga H, Sasaki M, Kuwabara Y, Hiraka K, Nakagawa M, Abe K. An analysis of the physiological FDG uptake pattern in the stomach. Ann Nucl Med 2003;17:733–8.PubMedCrossRef Koga H, Sasaki M, Kuwabara Y, Hiraka K, Nakagawa M, Abe K. An analysis of the physiological FDG uptake pattern in the stomach. Ann Nucl Med 2003;17:733–8.PubMedCrossRef
13.
go back to reference Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JW. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–6.PubMedCrossRef Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JW. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–6.PubMedCrossRef
14.
go back to reference Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210–7.PubMed Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210–7.PubMed
15.
go back to reference Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003;52:1602–6.PubMedCrossRef Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003;52:1602–6.PubMedCrossRef
16.
go back to reference van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 2005;46:400–4.PubMed van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 2005;46:400–4.PubMed
17.
go back to reference Buck AK, Halter G, Schirrmeister H, Halter G, Möller P, Kratochwil C. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003;44:1426–31.PubMed Buck AK, Halter G, Schirrmeister H, Halter G, Möller P, Kratochwil C. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003;44:1426–31.PubMed
18.
go back to reference Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003;30:1407–12.PubMedCrossRef Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003;30:1407–12.PubMedCrossRef
19.
go back to reference Herrmann K, Ott K, Buck AK, Loedick F, Wilhem D, Souvatzoglou M. Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med 2007;48:1945–50.PubMedCrossRef Herrmann K, Ott K, Buck AK, Loedick F, Wilhem D, Souvatzoglou M. Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med 2007;48:1945–50.PubMedCrossRef
20.
go back to reference Machulla HJ, Blocher A, Kuntzsch M, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;24:843–6.CrossRef Machulla HJ, Blocher A, Kuntzsch M, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;24:843–6.CrossRef
21.
go back to reference Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR. Routine production of 2-deoxy-2-[18F]fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 1990;17:273–9. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR. Routine production of 2-deoxy-2-[18F]fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 1990;17:273–9.
22.
go back to reference Hamilton SR, Aaltonen LA. Tumours of the stomach. WHO classification of tumours. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000. p. 38–52. Hamilton SR, Aaltonen LA. Tumours of the stomach. WHO classification of tumours. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000. p. 38–52.
23.
go back to reference Francis DL, Visvikis D, Costa DC, Arulampalam TH, Townsend C, Luthra SK. Potential impact of [18F] 3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003;30:988–4.PubMedCrossRef Francis DL, Visvikis D, Costa DC, Arulampalam TH, Townsend C, Luthra SK. Potential impact of [18F] 3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003;30:988–4.PubMedCrossRef
24.
go back to reference Yap C, Vranjesevic D, Cameron R, Czernin J. F18-fluorine-thymidine; a new molecular probe for PET imaging of cancer (abstract). Ann Surg Oncol 2003;10:S38.CrossRef Yap C, Vranjesevic D, Cameron R, Czernin J. F18-fluorine-thymidine; a new molecular probe for PET imaging of cancer (abstract). Ann Surg Oncol 2003;10:S38.CrossRef
25.
go back to reference Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ. 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004;45:226–31.PubMed Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ. 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004;45:226–31.PubMed
26.
go back to reference Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 2004;31:720–4.PubMedCrossRef Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 2004;31:720–4.PubMedCrossRef
27.
go back to reference Costa A, Silvestrini R, Mochen C, Legiaglie C, Boracchi P, Faramda A. P53 expression, DNA ploidy and S-phase cell fraction in operable locally advanced non-small-cell lung cancer. Br J Cancer 1996;73:914–9.PubMed Costa A, Silvestrini R, Mochen C, Legiaglie C, Boracchi P, Faramda A. P53 expression, DNA ploidy and S-phase cell fraction in operable locally advanced non-small-cell lung cancer. Br J Cancer 1996;73:914–9.PubMed
28.
go back to reference Konishi T, Miyama T, Sakamoto S, Hirata T, Mafune K, Hiraishi M. Activities of thymidylate synthetase and thymidine kinase in gastric cancer. Surg Oncol 1992;1:215–21.PubMedCrossRef Konishi T, Miyama T, Sakamoto S, Hirata T, Mafune K, Hiraishi M. Activities of thymidylate synthetase and thymidine kinase in gastric cancer. Surg Oncol 1992;1:215–21.PubMedCrossRef
29.
go back to reference Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000;182:311–22.PubMedCrossRef Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000;182:311–22.PubMedCrossRef
30.
go back to reference Spyratos F, Ferrero-Poüs M, Trassard M, Hacène K, Phillips E, Tubiana-Hulin M. Correlation between MIB-1 and other proliferation markers: clinical implications of the MIB-1 cutoff value. Cancer 2002;94:2151–9.PubMedCrossRef Spyratos F, Ferrero-Poüs M, Trassard M, Hacène K, Phillips E, Tubiana-Hulin M. Correlation between MIB-1 and other proliferation markers: clinical implications of the MIB-1 cutoff value. Cancer 2002;94:2151–9.PubMedCrossRef
31.
go back to reference Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027–32.PubMed Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027–32.PubMed
32.
go back to reference Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.PubMedCrossRef Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.PubMedCrossRef
33.
go back to reference Munch-Petersen B, Tyrsted G, Cloos l. Reversible ATP-dependent transition between two forms of human cytosolic thymidine kinase with different enzyme properties. J Biol Chem 1993;268:15621–5.PubMed Munch-Petersen B, Tyrsted G, Cloos l. Reversible ATP-dependent transition between two forms of human cytosolic thymidine kinase with different enzyme properties. J Biol Chem 1993;268:15621–5.PubMed
34.
go back to reference Barthel H, Cleuj MC, Collingridge DR, Hutchinson OC, Osman S, He Q. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63:3791–8.PubMed Barthel H, Cleuj MC, Collingridge DR, Hutchinson OC, Osman S, He Q. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63:3791–8.PubMed
35.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG. The role of 18F-FLT in cancer imaging: does it really reflect proliferation? Eur J Nucl Med Mol Imaging 2008;35:523–6.PubMedCrossRef Dimitrakopoulou-Strauss A, Strauss LG. The role of 18F-FLT in cancer imaging: does it really reflect proliferation? Eur J Nucl Med Mol Imaging 2008;35:523–6.PubMedCrossRef
36.
go back to reference Ott K, Herrmann K, Lordick F, Wieder H, Weber WA, Becker K. Early metabolic response evaluation by fluorine-18 fluorodeoxyglucose positron emission tomography allows in vivo testing of chemosensitivity in gastric cancer: long-term results of a prospective study. Clin Cancer Res 2008;14:2012–8.PubMedCrossRef Ott K, Herrmann K, Lordick F, Wieder H, Weber WA, Becker K. Early metabolic response evaluation by fluorine-18 fluorodeoxyglucose positron emission tomography allows in vivo testing of chemosensitivity in gastric cancer: long-term results of a prospective study. Clin Cancer Res 2008;14:2012–8.PubMedCrossRef
Metadata
Title
Detection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PET
Authors
Reiko Kameyama
Yuka Yamamoto
Kunihiko Izuishi
Ryusuke Takebayashi
Masanobu Hagiike
Makiko Murota
Masato Kaji
Reiji Haba
Yoshihiro Nishiyama
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0970-3

Other articles of this Issue 3/2009

European Journal of Nuclear Medicine and Molecular Imaging 3/2009 Go to the issue