Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Research

Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study

Authors: Sergei V Adamovich, Gerard G Fluet, Abraham Mathai, Qinyin Qiu, Jeffrey Lewis, Alma S Merians

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

Background

Current neuroscience has identified rehabilitation approaches with the potential to stimulate adaptive changes in the brains of persons with hemiparesis. These approaches include, intensive task-oriented training, bimanual activities and balancing proximal and distal upper extremity interventions to reduce competition between these segments for neural territory.

Methods

This paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the hand and arm of persons with hemiparesis. The system employs a simulated piano that presents visual, auditory and tactile feedback comparable to an actual piano. Arm tracking allows patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport and manipulation phases. The piano trainer includes songs and scales that can be performed with one or both hands. Adaptable haptic assistance is available for more involved subjects. An algorithm adjusts task difficulty in proportion to subject performance. A proof of concept study was performed on four subjects with upper extremity hemiparesis secondary to chronic stroke to establish: a) the safety and feasibility of this system and b) the concurrent validity of robotically measured kinematic and performance measures to behavioral measures of upper extremity function.

Results

None of the subjects experienced adverse events or responses during or after training. As a group, the subjects improved in both performance time and key press accuracy. Three of the four subjects demonstrated improvements in fractionation, the ability to move each finger individually. Two subjects improved their aggregate time on the Jebsen Test of Hand Function and three of the four subjects improved in Wolf Motor Function Test aggregate time.

Conclusion

The system designed in this paper has proven to be safe and feasible for the training of hand function for persons with hemiparesis. It features a flexible design that allows for the use and further study of adjustments in point of view, bilateral and unimanual treatment modes, adaptive training algorithms and haptically rendered collisions in the context of rehabilitation of the hemiparetic hand.
Appendix
Available only for authorised users
Literature
2.
go back to reference Gowland C, deBruin H, Basmajian JV, Plews N, Burcea I: Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys Ther 1992, 72: 624-633.PubMed Gowland C, deBruin H, Basmajian JV, Plews N, Burcea I: Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys Ther 1992, 72: 624-633.PubMed
3.
go back to reference Mahncke HW, Bronstone A, Merzenich MM: Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 2006, 157: 81-109.CrossRefPubMed Mahncke HW, Bronstone A, Merzenich MM: Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 2006, 157: 81-109.CrossRefPubMed
4.
go back to reference Schneider S, Schonle PW, Altenmuller E, Munte TF: Using musical instruments to improve motor skill recovery following a stroke. J Neurol 2007, 254: 1339-1346.CrossRefPubMed Schneider S, Schonle PW, Altenmuller E, Munte TF: Using musical instruments to improve motor skill recovery following a stroke. J Neurol 2007, 254: 1339-1346.CrossRefPubMed
5.
go back to reference Huang H, Chen Y, Xu W, Sundaram H, Olson L, Ingalls T, Rikakis T, He J: Novel design of interactive multimodal biofeedback system for neurorehabilitation. Conf Proc IEEE Eng Med Biol Soc 2006, 1: 4925-4928.CrossRefPubMed Huang H, Chen Y, Xu W, Sundaram H, Olson L, Ingalls T, Rikakis T, He J: Novel design of interactive multimodal biofeedback system for neurorehabilitation. Conf Proc IEEE Eng Med Biol Soc 2006, 1: 4925-4928.CrossRefPubMed
6.
go back to reference Shing CY, Fung C, Chuang TY, Penn IW, Doong JL: The study of auditory and haptic signals in a virtual reality-based hand rehabilitation system. Robotica 2003, 21: 211-218.CrossRef Shing CY, Fung C, Chuang TY, Penn IW, Doong JL: The study of auditory and haptic signals in a virtual reality-based hand rehabilitation system. Robotica 2003, 21: 211-218.CrossRef
7.
go back to reference Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG: Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top Stroke Rehabil 2007, 14: 1-12.CrossRefPubMed Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG: Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top Stroke Rehabil 2007, 14: 1-12.CrossRefPubMed
8.
go back to reference Kawasaki H, Ito S, Ishigure Y, Nishimoto Y, Aoki T, Mouri T, Sakeda H, Abe M: Development of a hand motion assist robot for rehabilitation therapyby patient self motion control. IEEE International Conference on Robotic Rehabilitaion (ICORR); The Netherlands 2007. Kawasaki H, Ito S, Ishigure Y, Nishimoto Y, Aoki T, Mouri T, Sakeda H, Abe M: Development of a hand motion assist robot for rehabilitation therapyby patient self motion control. IEEE International Conference on Robotic Rehabilitaion (ICORR); The Netherlands 2007.
9.
go back to reference Bouzit M, Burdea G, Popescu G, Boian R: THe Rutgers-Master II: New design force-feedback glove. IEEE/ASME Transactions on Mechatronics 2002, 7: 256-263.CrossRef Bouzit M, Burdea G, Popescu G, Boian R: THe Rutgers-Master II: New design force-feedback glove. IEEE/ASME Transactions on Mechatronics 2002, 7: 256-263.CrossRef
10.
go back to reference Adamovich S, Merians A, Boian R, Tremaine M, Burdea G, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. Conf Proc IEEE Eng Med Biol Soc 2004, 7: 4936-4939.PubMed Adamovich S, Merians A, Boian R, Tremaine M, Burdea G, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. Conf Proc IEEE Eng Med Biol Soc 2004, 7: 4936-4939.PubMed
11.
go back to reference Hlustik P, Solodkin A, Noll DC, Small SL: Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 2004, 21: 180-191.CrossRefPubMed Hlustik P, Solodkin A, Noll DC, Small SL: Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 2004, 21: 180-191.CrossRefPubMed
13.
go back to reference Zhou Z, Wan H, Gao S, Peng Q: A realistic force rendering algorithm for the Cybergrasp. In Ninth International Conference on Computer Aided Design and Computer Graphics. Washington DC. IEEE Computer Society; 2005:16-24. Zhou Z, Wan H, Gao S, Peng Q: A realistic force rendering algorithm for the Cybergrasp. In Ninth International Conference on Computer Aided Design and Computer Graphics. Washington DC. IEEE Computer Society; 2005:16-24.
14.
go back to reference Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24: 58-63.CrossRefPubMed Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24: 58-63.CrossRefPubMed
15.
go back to reference Bohannon RW, Smith MB: Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987, 67: 206-207.PubMed Bohannon RW, Smith MB: Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987, 67: 206-207.PubMed
16.
go back to reference Merians AS, Poizner H, Boian R, Burdea G, Adamovich S: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006, 20: 252-267.CrossRefPubMed Merians AS, Poizner H, Boian R, Burdea G, Adamovich S: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006, 20: 252-267.CrossRefPubMed
17.
go back to reference Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA: An objective and standardized test of hand function. Arch Phys Med Rehabil 1969, 50: 311-319.PubMed Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA: An objective and standardized test of hand function. Arch Phys Med Rehabil 1969, 50: 311-319.PubMed
18.
go back to reference Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL: The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair 2005, 19: 194-205.CrossRefPubMed Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL: The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair 2005, 19: 194-205.CrossRefPubMed
19.
go back to reference Adamovich S, Merians A, Boian R, Tremaine M, Burdea G, Recce M, Poizner H: A virtual reality (VR)-based exercise system for hand rehabilitation post stroke. Presence 2005, 14: 161-174.CrossRef Adamovich S, Merians A, Boian R, Tremaine M, Burdea G, Recce M, Poizner H: A virtual reality (VR)-based exercise system for hand rehabilitation post stroke. Presence 2005, 14: 161-174.CrossRef
20.
go back to reference Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000, 74: 27-55.CrossRefPubMed Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000, 74: 27-55.CrossRefPubMed
21.
go back to reference Nudo RJ: Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 2003, 7-10. Nudo RJ: Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 2003, 7-10.
22.
go back to reference Kleim JA, Barbay S, Nudo RJ: Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 1998, 80: 3321-3325.PubMed Kleim JA, Barbay S, Nudo RJ: Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 1998, 80: 3321-3325.PubMed
23.
go back to reference Dovat L, Lambercy O, Salman B, Johnson V, Milner T, Gassert R, Burdet E, Teo CL: Post-Stroke training of finger coordination with the HANDCARE (cable actuated rehabilitation equipment) a case study. International Convention for Rehabilitation Engineering and Assistive Technology 2008. Dovat L, Lambercy O, Salman B, Johnson V, Milner T, Gassert R, Burdet E, Teo CL: Post-Stroke training of finger coordination with the HANDCARE (cable actuated rehabilitation equipment) a case study. International Convention for Rehabilitation Engineering and Assistive Technology 2008.
24.
go back to reference Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed
Metadata
Title
Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study
Authors
Sergei V Adamovich
Gerard G Fluet
Abraham Mathai
Qinyin Qiu
Jeffrey Lewis
Alma S Merians
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-28

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue