Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

Dental follicle mesenchymal stem cell administration ameliorates muscle weakness in MuSK-immunized mice

Authors: Canan Ulusoy, Noushin Zibandeh, Selin Yıldırım, Nikolaos Trakas, Paraskevi Zisimopoulou, Melike Küçükerden, Hatice Tașlı, Socrates Tzartos, Kamil Göker, Erdem Tüzün, Tunç Akkoç

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

Myasthenia gravis (MG) is an antibody-mediated autoimmune disease of the neuromuscular junction (NMJ), mostly associated with acetylcholine receptor (AChR) antibodies. Around 5–10 % of MG patients show antibodies to muscle-specific tyrosine kinase (MuSK). Mesenchymal stem cell (MSC) administration has been shown to ameliorate muscle weakness in the experimental autoimmune myasthenia gravis (EAMG) model induced by AChR immunization.

Methods

To investigate the efficacy of stem cell treatment in MuSK-related EAMG, clinical and immunological features of MuSK-immunized mice with or without dental follicle MSC (DFMSC) treatment were compared.

Results

MuSK-immunized mice intravenously treated with DFMSC after second and third immunizations showed significantly lower EAMG incidence and severity and reduced serum anti-MuSK antibody, NMJ IgG, and C3 deposit levels and CD11b+ lymph node cell ratios. Moreover, lymph node cells of DFMSC-administered mice showed reduced proliferation and IL-6 and IL-12 production responses to MuSK stimulation. By contrast, proportions of B and T cell populations and production of a wide variety of cytokines were not affected from DFMSC treatment.

Conclusions

Our results suggest that DFMSC treatment shows its beneficial effects mostly through suppression of innate immune system, whereas other immune functions appear to be preserved. Stem cell treatment might thus constitute a specific and effective treatment method in MuSK-associated MG.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat. 2014;224:29–35.CrossRefPubMed Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat. 2014;224:29–35.CrossRefPubMed
3.
go back to reference Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med. 2008;177:701–11.PubMedCentralCrossRefPubMed Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med. 2008;177:701–11.PubMedCentralCrossRefPubMed
4.
go back to reference Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.CrossRefPubMed Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.CrossRefPubMed
5.
go back to reference Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006;30:681–7.CrossRefPubMed Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006;30:681–7.CrossRefPubMed
6.
go back to reference Li D, Wang GY, Dong BH, Zhang YC, Wang YX, Sun BC. Biological characteristics of human placental mesenchymal stem cells and their proliferative response to various cytokines. Cells Tissues Organs. 2007;186:169–79.CrossRefPubMed Li D, Wang GY, Dong BH, Zhang YC, Wang YX, Sun BC. Biological characteristics of human placental mesenchymal stem cells and their proliferative response to various cytokines. Cells Tissues Organs. 2007;186:169–79.CrossRefPubMed
7.
go back to reference Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.CrossRefPubMed Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.CrossRefPubMed
8.
go back to reference Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.PubMedCentralCrossRefPubMed Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.PubMedCentralCrossRefPubMed
9.
go back to reference Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–91.CrossRefPubMed Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–91.CrossRefPubMed
10.
go back to reference Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102:77–85.CrossRefPubMed Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102:77–85.CrossRefPubMed
11.
go back to reference Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.PubMedCentralCrossRefPubMed Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.PubMedCentralCrossRefPubMed
12.
go back to reference Mori G, Ballini A, Carbone C, Oranger A, Brunetti G, Di Benedetto A, et al. Osteogenic differentiation of dental follicle stem cells. Int J Med Sci. 2012;9:480–7.PubMedCentralCrossRefPubMed Mori G, Ballini A, Carbone C, Oranger A, Brunetti G, Di Benedetto A, et al. Osteogenic differentiation of dental follicle stem cells. Int J Med Sci. 2012;9:480–7.PubMedCentralCrossRefPubMed
13.
go back to reference Tarle SA, Shi S, Kaigler D. Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDs. J Cell Physiol. 2011;226:66–73.CrossRefPubMed Tarle SA, Shi S, Kaigler D. Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDs. J Cell Physiol. 2011;226:66–73.CrossRefPubMed
14.
go back to reference Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 2009;5:378–86.CrossRefPubMed Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 2009;5:378–86.CrossRefPubMed
15.
go back to reference Ogulur I, Gurhan G, Aksoy A, Duruksu G, Inci C, Filinte D, et al. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol. 2014;20:101–9.CrossRefPubMed Ogulur I, Gurhan G, Aksoy A, Duruksu G, Inci C, Filinte D, et al. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol. 2014;20:101–9.CrossRefPubMed
16.
go back to reference Barry FP, Murphy JM. Mesenchymal stromal cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.CrossRefPubMed Barry FP, Murphy JM. Mesenchymal stromal cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.CrossRefPubMed
17.
go back to reference Short B, Wagey R. Isolation and culture of mesenchymal stem cells from mouse compact bone. Methods Mol Biol. 2013;946:335–47.CrossRefPubMed Short B, Wagey R. Isolation and culture of mesenchymal stem cells from mouse compact bone. Methods Mol Biol. 2013;946:335–47.CrossRefPubMed
18.
go back to reference Cipriani P, Ruscitti P, Di Benedetto P, Carubbi F, Liakouli V, Berardicurti O, et al. Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies. Cytotherapy. 2015;17:832–49.CrossRefPubMed Cipriani P, Ruscitti P, Di Benedetto P, Carubbi F, Liakouli V, Berardicurti O, et al. Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies. Cytotherapy. 2015;17:832–49.CrossRefPubMed
20.
go back to reference Farini A, Sitzia C, Erratico S, Meregalli M, Torrente Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int. 2014;2014:306573.PubMedCentralCrossRefPubMed Farini A, Sitzia C, Erratico S, Meregalli M, Torrente Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int. 2014;2014:306573.PubMedCentralCrossRefPubMed
21.
go back to reference Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L, et al. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol. 2010;72:242–9.CrossRefPubMed Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L, et al. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol. 2010;72:242–9.CrossRefPubMed
22.
go back to reference Trakas N, Zisimopoulou P, Tzartos SJ. Development of a highly sensitive diagnostic assay for muscle-specific tyrosine kinase (MuSK) autoantibodies in myasthenia gravis. J Neuroimmunol. 2011;240–241:79–86.CrossRefPubMed Trakas N, Zisimopoulou P, Tzartos SJ. Development of a highly sensitive diagnostic assay for muscle-specific tyrosine kinase (MuSK) autoantibodies in myasthenia gravis. J Neuroimmunol. 2011;240–241:79–86.CrossRefPubMed
23.
go back to reference Skriapa L, Zisimopoulou P, Trakas N, Grapsa E, Tzartos SJ. Expression of extracellular domains of muscle specific kinase (MuSK) and use as immunoadsorbents for the development of an antigen-specific therapy. J Neuroimmunol. 2014;276:150–8.CrossRefPubMed Skriapa L, Zisimopoulou P, Trakas N, Grapsa E, Tzartos SJ. Expression of extracellular domains of muscle specific kinase (MuSK) and use as immunoadsorbents for the development of an antigen-specific therapy. J Neuroimmunol. 2014;276:150–8.CrossRefPubMed
24.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed
25.
go back to reference Petrou P, Argov A, Lennon VA, Gotkine M, Kassis I, Vaknin-Dembinsky A, et al. Rare combination of myasthenia and motor neuronopathy, responsive to MSC-NTF stem cell therapy. Muscle Nerve. 2014;49:455–7.CrossRefPubMed Petrou P, Argov A, Lennon VA, Gotkine M, Kassis I, Vaknin-Dembinsky A, et al. Rare combination of myasthenia and motor neuronopathy, responsive to MSC-NTF stem cell therapy. Muscle Nerve. 2014;49:455–7.CrossRefPubMed
26.
go back to reference Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, et al. CCL2 recruitment of IL-6-producing CD11b + monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol. 2008;38:1877–88.CrossRefPubMed Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, et al. CCL2 recruitment of IL-6-producing CD11b + monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol. 2008;38:1877–88.CrossRefPubMed
27.
go back to reference Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, et al. CD11c + CD11b + dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol. 2008;181:2483–93.PubMedCentralCrossRefPubMed Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, et al. CD11c + CD11b + dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol. 2008;181:2483–93.PubMedCentralCrossRefPubMed
28.
go back to reference Ke Y, Sun D, Jiang G, Kaplan HJ, Shao H. IL-22-induced regulatory CD11b + APCs suppress experimental autoimmune uveitis. J Immunol. 2011;187:2130–9.PubMedCentralCrossRefPubMed Ke Y, Sun D, Jiang G, Kaplan HJ, Shao H. IL-22-induced regulatory CD11b + APCs suppress experimental autoimmune uveitis. J Immunol. 2011;187:2130–9.PubMedCentralCrossRefPubMed
29.
go back to reference Kriegel MA, Rathinam C, Flavell RA. Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c + CD11b + dendritic cells. Proc Natl Acad Sci U S A. 2012;109:3457–62.PubMedCentralCrossRefPubMed Kriegel MA, Rathinam C, Flavell RA. Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c + CD11b + dendritic cells. Proc Natl Acad Sci U S A. 2012;109:3457–62.PubMedCentralCrossRefPubMed
30.
go back to reference Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151-61. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151-61.
31.
go back to reference Zhang Y, Yang H, Xiao B, Wu M, Zhou W, Li J, et al. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol. 2009;46:657–67.CrossRefPubMed Zhang Y, Yang H, Xiao B, Wu M, Zhou W, Li J, et al. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol. 2009;46:657–67.CrossRefPubMed
32.
go back to reference Link H, Huang YM, Xiao B. Suppression of EAMG in Lewis rats by IL-10-exposed dendritic cells. Ann N Y Acad Sci. 2003;998:537–8.CrossRefPubMed Link H, Huang YM, Xiao B. Suppression of EAMG in Lewis rats by IL-10-exposed dendritic cells. Ann N Y Acad Sci. 2003;998:537–8.CrossRefPubMed
33.
go back to reference Tüzün E, Saini SS, Yang H, Alagappan D, Higgs S, Christadoss P. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol. 2006;174:157–67.CrossRefPubMed Tüzün E, Saini SS, Yang H, Alagappan D, Higgs S, Christadoss P. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol. 2006;174:157–67.CrossRefPubMed
34.
go back to reference Laranjeira P, Gomes J, Pedreiro S, Pedrosa M, Martinho A, Antunes B, et al. Human bone marrow-derived mesenchymal stromal cells differentially inhibit cytokine production by peripheral blood monocytes subpopulations and myeloid dendritic cells. Stem Cells Int. 2015;2015:819084.PubMedCentralCrossRefPubMed Laranjeira P, Gomes J, Pedreiro S, Pedrosa M, Martinho A, Antunes B, et al. Human bone marrow-derived mesenchymal stromal cells differentially inhibit cytokine production by peripheral blood monocytes subpopulations and myeloid dendritic cells. Stem Cells Int. 2015;2015:819084.PubMedCentralCrossRefPubMed
35.
go back to reference Zeng SL, Wang LH, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep. 2015;12:2511–20.PubMedCentralPubMed Zeng SL, Wang LH, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep. 2015;12:2511–20.PubMedCentralPubMed
36.
go back to reference Rothfuchs AG, Egen JG, Feng CG, Antonelli LR, Bafica A, Winter N, et al. In situ IL-12/23p40 production during mycobacterial infection is sustained by CD11b high dendritic cells localized in tissue sites distinct from those harboring bacilli. J Immunol. 2009;182:6915–25.PubMedCentralCrossRefPubMed Rothfuchs AG, Egen JG, Feng CG, Antonelli LR, Bafica A, Winter N, et al. In situ IL-12/23p40 production during mycobacterial infection is sustained by CD11b high dendritic cells localized in tissue sites distinct from those harboring bacilli. J Immunol. 2009;182:6915–25.PubMedCentralCrossRefPubMed
37.
go back to reference Sato A, Hashiguchi M, Toda E, Iwasaki A, Hachimura S, Kaminogawa S. CD11b + Peyer’s patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J Immunol. 2003;171:3684–90.CrossRefPubMed Sato A, Hashiguchi M, Toda E, Iwasaki A, Hachimura S, Kaminogawa S. CD11b + Peyer’s patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J Immunol. 2003;171:3684–90.CrossRefPubMed
38.
go back to reference Karachunski PI, Ostlie NS, Monfardini C, Conti-Fine BM. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J Immunol. 2000;164:5236–44.CrossRefPubMed Karachunski PI, Ostlie NS, Monfardini C, Conti-Fine BM. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J Immunol. 2000;164:5236–44.CrossRefPubMed
39.
go back to reference Deng C, Goluszko E, Tüzün E, Yang H, Christadoss P. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J Immunol. 2002;169:1077–83.CrossRefPubMed Deng C, Goluszko E, Tüzün E, Yang H, Christadoss P. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J Immunol. 2002;169:1077–83.CrossRefPubMed
40.
go back to reference Ulusoy C, Kim E, Tüzün E, Huda R, Yılmaz V, Poulas K, et al. Preferential production of IgG1, IL-4 and IL-10 in MuSK-immunized mice. Clin Immunol. 2014;151:155–63.CrossRefPubMed Ulusoy C, Kim E, Tüzün E, Huda R, Yılmaz V, Poulas K, et al. Preferential production of IgG1, IL-4 and IL-10 in MuSK-immunized mice. Clin Immunol. 2014;151:155–63.CrossRefPubMed
Metadata
Title
Dental follicle mesenchymal stem cell administration ameliorates muscle weakness in MuSK-immunized mice
Authors
Canan Ulusoy
Noushin Zibandeh
Selin Yıldırım
Nikolaos Trakas
Paraskevi Zisimopoulou
Melike Küçükerden
Hatice Tașlı
Socrates Tzartos
Kamil Göker
Erdem Tüzün
Tunç Akkoç
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0451-0

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue