Skip to main content
Top
Published in: Osteoporosis International 1/2016

01-01-2016 | Short Communication

Denosumab increases sublesional bone mass in osteoporotic individuals with recent spinal cord injury

Authors: L. Gifre, J. Vidal, J. L. Carrasco, A. Muxi, E. Portell, A. Monegal, N. Guañabens, P. Peris

Published in: Osteoporosis International | Issue 1/2016

Login to get access

Abstract

Summary

Osteoporosis is a frequent complication related to spinal cord injury (SCI), and data on osteoporosis treatment after SCI is scarce. Treatment with denosumab increases lumbar and femoral BMD and decreases bone turnover markers in individuals with recent SCI. This drug may be a promising therapeutic option in SCI-related osteoporosis.

Introduction

Osteoporosis development is a frequent complication related to SCI, especially at the sublesional level. Nevertheless, data on osteoporosis treatment after SCI is scarce, particularly short term after injury, when the highest bone loss is produced. The aim of this study was to analyze the efficacy of denosumab in the treatment of SCI-related osteoporosis.

Methods

Fourteen individuals aged 39 ± 15 years with osteoporosis secondary to recent SCI (mean injury duration 15 ± 4 months) were treated with denosumab for 12 months. Bone turnover markers (BTMs) (PINP, bone ALP, sCTx), 25-hydroxyvitamin D (25OHD) levels and bone mineral density (BMD) at the lumbar spine (LS), total hip (TH), and femoral neck (FN) were assessed at baseline and at 12 months. All participants received calcium and vitamin D supplementation.

Results

At 12 months, SCI denosumab-treated participants showed a significant increase in BMD at TH (+2.4 ± 3.6 %, p = 0.042), FN (+3 ± 3.6 %, p = 0.006), and LS (+7.8 ± 3.7 %, p < 0.001) compared to baseline values. Denosumab treatment was associated with significant decreases in BTMs (bone ALP −42 %, p < 0.001; PINP −58 %, p < 0.001, sCTx −57 %, p = 0.002) at 12 months. BMD evolution was not related to BTM changes or 25OHD serum levels. No skeletal fractures or serious adverse events were observed during follow-up.

Conclusions

Treatment with denosumab increases lumbar and femoral BMD and decreases bone turnover markers in individuals with recent SCI. This drug may be a promising therapeutic option in SCI-related osteoporosis.
Literature
1.
go back to reference Gifre L, Vidal J, Carrasco J, Filella X, Ruiz-Gaspà S, Muxi A, Portell E, Monegal A, Guañabens N, Peris P (2015) Effect of recent spinal cord injury on Wnt signaling antagonists (sclerostin and Dkk-1) and their relationship with bone loss. A 12-month prospective study. J Bone Miner Res 30:1014–1021PubMedCrossRef Gifre L, Vidal J, Carrasco J, Filella X, Ruiz-Gaspà S, Muxi A, Portell E, Monegal A, Guañabens N, Peris P (2015) Effect of recent spinal cord injury on Wnt signaling antagonists (sclerostin and Dkk-1) and their relationship with bone loss. A 12-month prospective study. J Bone Miner Res 30:1014–1021PubMedCrossRef
2.
go back to reference Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28:361–369PubMedCrossRef Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28:361–369PubMedCrossRef
3.
go back to reference Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32PubMedCrossRef Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32PubMedCrossRef
4.
go back to reference Shojaei H, Soroush MR, Modirian E (2006) Spinal cord injury-induced osteoporosis in veterans. J Spinal Disord Tech 19:114–117PubMedCrossRef Shojaei H, Soroush MR, Modirian E (2006) Spinal cord injury-induced osteoporosis in veterans. J Spinal Disord Tech 19:114–117PubMedCrossRef
5.
go back to reference Bryson JE, Gourlay ML (2009) Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med 32:215–225PubMedPubMedCentral Bryson JE, Gourlay ML (2009) Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med 32:215–225PubMedPubMedCentral
6.
go back to reference Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS (2013) Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients—a systematic review and meta-analysis. PLoS One 8, e81124PubMedPubMedCentralCrossRef Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS (2013) Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients—a systematic review and meta-analysis. PLoS One 8, e81124PubMedPubMedCentralCrossRef
7.
go back to reference Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33:410–421PubMedCrossRef Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33:410–421PubMedCrossRef
8.
go back to reference Gordon KE, Wald MJ, Schnitzer TJ (2013) Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R 5:663–671PubMedCrossRef Gordon KE, Wald MJ, Schnitzer TJ (2013) Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R 5:663–671PubMedCrossRef
9.
go back to reference Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765PubMedCrossRef Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765PubMedCrossRef
10.
go back to reference McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ, AMG 162 Bone Loss Study Group (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831PubMedCrossRef McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ, AMG 162 Bone Loss Study Group (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831PubMedCrossRef
11.
go back to reference Jiang SD, Jiang LS, Dai LY (2007) Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int 18:339–349PubMedCrossRef Jiang SD, Jiang LS, Dai LY (2007) Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int 18:339–349PubMedCrossRef
12.
go back to reference Waring WP 3rd, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, Jones L, Kirshblum S, Marino R, Mulcahey MJ, Reeves R, Scelza WM, Schmidt-Read M, Stein A (2010) 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med 33:346–352PubMedPubMedCentral Waring WP 3rd, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, Jones L, Kirshblum S, Marino R, Mulcahey MJ, Reeves R, Scelza WM, Schmidt-Read M, Stein A (2010) 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med 33:346–352PubMedPubMedCentral
13.
go back to reference (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1-129 (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1-129
14.
go back to reference Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, Baron R, Dempster DW (2015) Sustained modeling-based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. J Bone Miner Res 30:1280–1289PubMedCrossRef Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, Baron R, Dempster DW (2015) Sustained modeling-based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. J Bone Miner Res 30:1280–1289PubMedCrossRef
15.
go back to reference Giangregorio L, McCartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29:489–500PubMedPubMedCentral Giangregorio L, McCartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29:489–500PubMedPubMedCentral
16.
go back to reference Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192PubMedCrossRef Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192PubMedCrossRef
17.
go back to reference Orwoll E, Teglbjærg CS, Langdahl BL, Chapurlat R, Czerwinski E, Kendler DL, Reginster JY, Kivitz A, Lewiecki EM, Miller PD, Bolognese MA, McClung MR, Bone HG, Ljunggren Ö, Abrahamsen B, Gruntmanis U, Yang YC, Wagman RB, Siddhanti S, Grauer A, Hall JW, Boonen S (2012) A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab 97:3161–3169PubMedCrossRef Orwoll E, Teglbjærg CS, Langdahl BL, Chapurlat R, Czerwinski E, Kendler DL, Reginster JY, Kivitz A, Lewiecki EM, Miller PD, Bolognese MA, McClung MR, Bone HG, Ljunggren Ö, Abrahamsen B, Gruntmanis U, Yang YC, Wagman RB, Siddhanti S, Grauer A, Hall JW, Boonen S (2012) A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab 97:3161–3169PubMedCrossRef
18.
go back to reference Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139PubMedCrossRef Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139PubMedCrossRef
19.
go back to reference Adriaansen JJ, Post MW, de Groot S, van Asbeck FW, Stolwijk-Swüste JM, Tepper M, Lindeman E (2013) Secondary health conditions in persons with spinal cord injury: a longitudinal study from one to five years post-discharge. J Rehabil Med 45:1016–1022PubMedCrossRef Adriaansen JJ, Post MW, de Groot S, van Asbeck FW, Stolwijk-Swüste JM, Tepper M, Lindeman E (2013) Secondary health conditions in persons with spinal cord injury: a longitudinal study from one to five years post-discharge. J Rehabil Med 45:1016–1022PubMedCrossRef
20.
go back to reference Noreau L, Proulx P, Gagnon L, Drolet M, Laramée MT (2000) Secondary impairments after spinal cord injury: a population-based study. Am J Phys Med Rehabil 79:526–535PubMedCrossRef Noreau L, Proulx P, Gagnon L, Drolet M, Laramée MT (2000) Secondary impairments after spinal cord injury: a population-based study. Am J Phys Med Rehabil 79:526–535PubMedCrossRef
Metadata
Title
Denosumab increases sublesional bone mass in osteoporotic individuals with recent spinal cord injury
Authors
L. Gifre
J. Vidal
J. L. Carrasco
A. Muxi
E. Portell
A. Monegal
N. Guañabens
P. Peris
Publication date
01-01-2016
Publisher
Springer London
Published in
Osteoporosis International / Issue 1/2016
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-015-3333-5

Other articles of this Issue 1/2016

Osteoporosis International 1/2016 Go to the issue