Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Dehydroepiandrosterone sulfate and dehydroepiandrosterone sulfate/cortisol ratio in cirrhotic patients with septic shock: another sign of hepatoadrenal syndrome?

Authors: Ming-Hung Tsai, Hui-Chun Huang, Yun-Shing Peng, Yung-Chang Chen, Ya-Chung Tian, Chih-Wei Yang, Jau-Min Lien, Ji-Tseng Fang, Cheng-Shyong Wu, Sen-Yung Hsieh, Fa-Yauh Lee

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

Cirrhotic patients are susceptible to sepsis and critical illness-related corticosteroid insufficiency (CIRCI). Dehydroepiandrosterone sulfate (DHEAS) is a corticotropin-dependent adrenal androgen, which has immunostimulating and antiglucocorticoid effects. Considering the synchronized synthesis of cortisol and DHEAS and their opposing effects to each other, investigators have proposed measuring these two hormones as a ratio. Severe sepsis has been associated with low DHEAS, especially relative to high cortisol. Despite growing interest in the role of adrenal androgen replacement in critical illness, there have been no data about DHEAS and the DHEAS/cortisol ratio in patients with liver cirrhosis. We studied whether low concentrations of DHEAS and decreased DHEAS/cortisol ratio are associated with poor outcome in patients with liver cirrhosis and septic shock.

Methods

We recruited 46 cirrhotic patients with septic shock, and 46 noncirrhotic counterparts matched by age and sex. We evaluated adrenal function using the short corticotropin stimulation test and analyzed the relation between DHEAS and cortisol.

Results

While the nonsurvivors in the cirrhotic group had significantly lower baseline DHEAS, lower baseline DHEAS/cortisol ratio, and reduced increments of both DHEAS and cortisol upon corticotropin stimulation, the survivors had lower baseline cortisol. Cirrhotic patients with lower DHEAS/cortisol ratio (<1.50) had higher levels of interleukin-6 and tumor necrosis factor alpha, higher Sequential Organ Failure Assessment scores, and higher rates of CIRCI and hospital mortality. Using the area under the receiver operating characteristic (AUROC) curve, both DHEAS and the DHEAS/cortisol ratio demonstrated a good discriminative power for predicting hospital survival (AUROC 0.807 and 0.925 respectively). The cirrhotic group had lower DHEAS and DHEAS/cortisol ratio but higher rates of CIRCI and hospital mortality, compared to the noncirrhotic group.

Conclusions

There is dissociation between cortisol (increased) and DHEAS (decreased) in those cirrhotic patients who succumb to septic shock. Low DHEAS/cortisol ratios are associated with more severe diseases, inflammation, and CIRCI and can serve as a prognostic marker. More investigations are needed to evaluate the role of adrenal androgen in this clinical setting.
Literature
1.
go back to reference Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003;348:727–34.CrossRefPubMed Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003;348:727–34.CrossRefPubMed
2.
go back to reference Jurney TH, Cockrell Jr JL, Lindberg JS, et al. Spectrum of serum cortisol response to ACTH in ICU patients. Correlation with degree of illness and mortality. Chest. 1987;92:292–5.CrossRefPubMed Jurney TH, Cockrell Jr JL, Lindberg JS, et al. Spectrum of serum cortisol response to ACTH in ICU patients. Correlation with degree of illness and mortality. Chest. 1987;92:292–5.CrossRefPubMed
3.
go back to reference Reincke M, Allolio B, Wurth G, et al. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. J Clin Endocrinol Metab. 1993;77:151–6.PubMed Reincke M, Allolio B, Wurth G, et al. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. J Clin Endocrinol Metab. 1993;77:151–6.PubMed
4.
go back to reference Kroboth PD, Salek FS, Pittenger AL, et al. DHEA and DHEA-S: a review. J Clin Pharmacol. 1999;39:327–48.CrossRefPubMed Kroboth PD, Salek FS, Pittenger AL, et al. DHEA and DHEA-S: a review. J Clin Pharmacol. 1999;39:327–48.CrossRefPubMed
6.
go back to reference Al-Aridi R, Abdelmannan D, Arafah BM. Biochemical diagnosis of adrenal insufficiency: the added value of dehydroepiandrosterone sulfate measurements. Endocr Pract. 2011;17:261–70.CrossRefPubMed Al-Aridi R, Abdelmannan D, Arafah BM. Biochemical diagnosis of adrenal insufficiency: the added value of dehydroepiandrosterone sulfate measurements. Endocr Pract. 2011;17:261–70.CrossRefPubMed
7.
go back to reference Nasrallah MP, Arafah BM. The value of dehydroepiandrosterone sulfate measurements in the assessment of adrenal function. J Clin Endocrinol Metab. 2003;88:5293–8.CrossRefPubMed Nasrallah MP, Arafah BM. The value of dehydroepiandrosterone sulfate measurements in the assessment of adrenal function. J Clin Endocrinol Metab. 2003;88:5293–8.CrossRefPubMed
8.
go back to reference Fischli S, Jenni S, Allemann S, et al. Dehydroepiandrosterone sulfate in the assessment of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab. 2008;93:539–42.CrossRefPubMed Fischli S, Jenni S, Allemann S, et al. Dehydroepiandrosterone sulfate in the assessment of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab. 2008;93:539–42.CrossRefPubMed
9.
go back to reference Rosenfeld RS, Hellman L, Gallagher TF. Metabolism and inter-conversion of dehydroisoandrosterone and dehydroisoandrosterone sulfate. J Clin Endocrinol Metab. 1972;35:187–93.CrossRefPubMed Rosenfeld RS, Hellman L, Gallagher TF. Metabolism and inter-conversion of dehydroisoandrosterone and dehydroisoandrosterone sulfate. J Clin Endocrinol Metab. 1972;35:187–93.CrossRefPubMed
10.
go back to reference Oberbeck R, Dahlweid M, Koch R, et al. Dehydroepiandrosterone decreases mortality rate and improves cellular immune function during polymicrobial sepsis. Crit Care Med. 2001;29:380–4.CrossRefPubMed Oberbeck R, Dahlweid M, Koch R, et al. Dehydroepiandrosterone decreases mortality rate and improves cellular immune function during polymicrobial sepsis. Crit Care Med. 2001;29:380–4.CrossRefPubMed
11.
go back to reference Angele MK, Catania RA, Ayala A, et al. Dehydroepiandrosterone: an inexpensive steroid hormone that decreases the mortality due to sepsis following trauma-induced hemorrhage. Arch Surg. 1998;133:1281–8.CrossRefPubMed Angele MK, Catania RA, Ayala A, et al. Dehydroepiandrosterone: an inexpensive steroid hormone that decreases the mortality due to sepsis following trauma-induced hemorrhage. Arch Surg. 1998;133:1281–8.CrossRefPubMed
12.
go back to reference Suzuki T, Suzuki N, Daynes RA, et al. Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells. Clin Immunol Immunopathol. 1991;61:202–11.CrossRefPubMed Suzuki T, Suzuki N, Daynes RA, et al. Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells. Clin Immunol Immunopathol. 1991;61:202–11.CrossRefPubMed
13.
go back to reference Padgett DA, Loria RM. In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol. J Immunol. 1994;153:1544–52.PubMed Padgett DA, Loria RM. In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol. J Immunol. 1994;153:1544–52.PubMed
14.
go back to reference McLachlan JA, Serkin CD, Bakouche O. Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity. J Immunol. 1996;156:328–35.PubMed McLachlan JA, Serkin CD, Bakouche O. Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity. J Immunol. 1996;156:328–35.PubMed
15.
go back to reference Maurer M, Trajanoski Z, Frey G, et al. Differential gene expression profile of glucocorticoids, testosterone, and dehydroepiandrosterone in human cells. Hormone Metab Res. 2002;33:691–5.CrossRef Maurer M, Trajanoski Z, Frey G, et al. Differential gene expression profile of glucocorticoids, testosterone, and dehydroepiandrosterone in human cells. Hormone Metab Res. 2002;33:691–5.CrossRef
16.
go back to reference Bozza V, D'Attilio L, Mahuad CV, et al. Altered cortisol/DHEA ratio in tuberculosis patients and its relationship with abnormalities in the mycobacterial-driven cytokine production by peripheral blood. Scand J Immunol. 2007;66:97–103.CrossRefPubMed Bozza V, D'Attilio L, Mahuad CV, et al. Altered cortisol/DHEA ratio in tuberculosis patients and its relationship with abnormalities in the mycobacterial-driven cytokine production by peripheral blood. Scand J Immunol. 2007;66:97–103.CrossRefPubMed
17.
go back to reference Mocking R, Pellikaan C, Lok A, et al. DHEAS and cortisol/DHEAS-ratio in recurrent depression: state, or trait predicting 10-year recurrence? Psychoneuroendocrinology. 2015;59:91–101.CrossRefPubMed Mocking R, Pellikaan C, Lok A, et al. DHEAS and cortisol/DHEAS-ratio in recurrent depression: state, or trait predicting 10-year recurrence? Psychoneuroendocrinology. 2015;59:91–101.CrossRefPubMed
18.
go back to reference Beishuizen A, Thijs LG, Vermes I. Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Crit Care. 2002;6:434–8.CrossRefPubMedPubMedCentral Beishuizen A, Thijs LG, Vermes I. Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Crit Care. 2002;6:434–8.CrossRefPubMedPubMedCentral
19.
go back to reference Arlt W, Hammer F, Sanning P, et al. Dissociation of serum dehydroepiandrosterone and dehydroepiandrosterone sulfate in septic shock. J Clin Endocrinol Metab. 2006;91:2548–54.CrossRefPubMed Arlt W, Hammer F, Sanning P, et al. Dissociation of serum dehydroepiandrosterone and dehydroepiandrosterone sulfate in septic shock. J Clin Endocrinol Metab. 2006;91:2548–54.CrossRefPubMed
20.
go back to reference Marx C, Petros S, Bornstein SR, et al. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Crit Care Med. 2003;31:1382–8.CrossRefPubMed Marx C, Petros S, Bornstein SR, et al. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Crit Care Med. 2003;31:1382–8.CrossRefPubMed
21.
go back to reference Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest. 2003;124:1016–20.CrossRefPubMed Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest. 2003;124:1016–20.CrossRefPubMed
22.
go back to reference Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis. 2008;28:26–42.CrossRefPubMed Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis. 2008;28:26–42.CrossRefPubMed
23.
go back to reference Tsai MH, Peng YS, Chen YC, et al. Low serum concentration of apolipoproteinA-I is an indicator of poor prognosis in cirrhotic patients with severe sepsis. J Hepatol. 2009;50:906–15.CrossRefPubMed Tsai MH, Peng YS, Chen YC, et al. Low serum concentration of apolipoproteinA-I is an indicator of poor prognosis in cirrhotic patients with severe sepsis. J Hepatol. 2009;50:906–15.CrossRefPubMed
24.
go back to reference Haddad JJ, Saadé NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol. 2002;133:1–19.CrossRefPubMed Haddad JJ, Saadé NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol. 2002;133:1–19.CrossRefPubMed
25.
go back to reference Tsai MH, Peng YS, Chen YC, et al. Adrenal insufficiency in patients with cirrhosis, severe sepsis and septic shock. Hepatology. 2006;43:673–81.CrossRefPubMed Tsai MH, Peng YS, Chen YC, et al. Adrenal insufficiency in patients with cirrhosis, severe sepsis and septic shock. Hepatology. 2006;43:673–81.CrossRefPubMed
26.
go back to reference Fernández J, Escorsell A, Zabalza M, et al. Adrenal insufficiency in patients with cirrhosis and septic shock: effect of treatment with hydrocortisone on survival. Hepatology. 2006;44:1288–95.CrossRefPubMed Fernández J, Escorsell A, Zabalza M, et al. Adrenal insufficiency in patients with cirrhosis and septic shock: effect of treatment with hydrocortisone on survival. Hepatology. 2006;44:1288–95.CrossRefPubMed
27.
go back to reference O'Beirne J, Holmes M, Agarwal B, et al. Adrenal insufficiency in liver disease—what is the evidence? J Hepatol. 2007;47:418–23.CrossRefPubMed O'Beirne J, Holmes M, Agarwal B, et al. Adrenal insufficiency in liver disease—what is the evidence? J Hepatol. 2007;47:418–23.CrossRefPubMed
28.
go back to reference Fede G, Spadaro L, Tomaselli T, et al. Adrenocortical dysfunction in liver disease: a systematic review. Hepatology. 2012;55:1282–91.CrossRefPubMed Fede G, Spadaro L, Tomaselli T, et al. Adrenocortical dysfunction in liver disease: a systematic review. Hepatology. 2012;55:1282–91.CrossRefPubMed
29.
go back to reference Dhatariya KK. Is there a role for dehydroepiandrosterone replacement in the intensive care population? Intensive Care Med. 2003;29:1877–80.CrossRefPubMed Dhatariya KK. Is there a role for dehydroepiandrosterone replacement in the intensive care population? Intensive Care Med. 2003;29:1877–80.CrossRefPubMed
30.
go back to reference Franz C, Watson D, Longcope C. Estrone sulfate and dehydroepiandrosterone sulfate concentrations in normal subjects and men with cirrhosis. Steroids. 1979;34:563–73.CrossRefPubMed Franz C, Watson D, Longcope C. Estrone sulfate and dehydroepiandrosterone sulfate concentrations in normal subjects and men with cirrhosis. Steroids. 1979;34:563–73.CrossRefPubMed
31.
go back to reference Kalaitzakis E, Josefsson A, Castedal M, et al. Factors related to fatigue in patients with cirrhosis before and after liver transplantation. Clin Gastroenterol Hepatol. 2012;10:174–81.CrossRefPubMed Kalaitzakis E, Josefsson A, Castedal M, et al. Factors related to fatigue in patients with cirrhosis before and after liver transplantation. Clin Gastroenterol Hepatol. 2012;10:174–81.CrossRefPubMed
32.
go back to reference Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis [The ACCP/SCCM consensus conference committee. American College of Chest Physicians/Society of Critical Care Medicine]. Chest. 1992;101:1644–55.CrossRefPubMed Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis [The ACCP/SCCM consensus conference committee. American College of Chest Physicians/Society of Critical Care Medicine]. Chest. 1992;101:1644–55.CrossRefPubMed
33.
go back to reference Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.CrossRefPubMed Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.CrossRefPubMed
34.
go back to reference Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the esophagus in the bleeding esophageal varices. Br J Surg. 1973;60:648–52. Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the esophagus in the bleeding esophageal varices. Br J Surg. 1973;60:648–52.
35.
go back to reference Kamath PS, Weisner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.CrossRefPubMed Kamath PS, Weisner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.CrossRefPubMed
36.
go back to reference Wehler M, Kokoska J, Reulbach U, et al. Short-term prognosis in critically ill patients with cirrhosis assessed by prognostic scoring systems. Hepatology. 2001;34:255–61.CrossRefPubMed Wehler M, Kokoska J, Reulbach U, et al. Short-term prognosis in critically ill patients with cirrhosis assessed by prognostic scoring systems. Hepatology. 2001;34:255–61.CrossRefPubMed
37.
go back to reference Marik PE, Pastores SM, Annane D, et al. American College of Critical Care Medicine: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008;36:1937–49.CrossRefPubMed Marik PE, Pastores SM, Annane D, et al. American College of Critical Care Medicine: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008;36:1937–49.CrossRefPubMed
38.
go back to reference Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–48.CrossRefPubMed Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–48.CrossRefPubMed
39.
go back to reference Liu D, Si H, Reynolds KA, et al. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through Gαi protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology. 2007;148:3068–76.CrossRefPubMed Liu D, Si H, Reynolds KA, et al. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through Gαi protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology. 2007;148:3068–76.CrossRefPubMed
40.
go back to reference Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Gαi2,3. J Biol Chem. 2002;277:21379–88.CrossRefPubMed Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Gαi2,3. J Biol Chem. 2002;277:21379–88.CrossRefPubMed
41.
go back to reference Bhuiyan S, Fukunaga K. Stimulation of Sigma-1 receptor by dehydroepiandrosterone ameliorates hypertension-induced kidney hypertrophy in ovariectomized rats. Exp Biol Med (Maywood). 2010;235:356–64.CrossRef Bhuiyan S, Fukunaga K. Stimulation of Sigma-1 receptor by dehydroepiandrosterone ameliorates hypertension-induced kidney hypertrophy in ovariectomized rats. Exp Biol Med (Maywood). 2010;235:356–64.CrossRef
42.
go back to reference Tagashira H, Bhuiyan S, Shioda N, et al. Distinct cardioprotective effects of 17β-estradiol and dehydroepiandrosterone on pressure overload-induced hypertrophy in ovariectomized female rats. Menopause. 2011;18:1317–26.CrossRefPubMed Tagashira H, Bhuiyan S, Shioda N, et al. Distinct cardioprotective effects of 17β-estradiol and dehydroepiandrosterone on pressure overload-induced hypertrophy in ovariectomized female rats. Menopause. 2011;18:1317–26.CrossRefPubMed
43.
go back to reference Danenberg HD, Alpert G, Lustig S, et al. Dehydroepiandrosterone protects mice fromendotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother. 1992;36:2275–9.CrossRefPubMedPubMedCentral Danenberg HD, Alpert G, Lustig S, et al. Dehydroepiandrosterone protects mice fromendotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother. 1992;36:2275–9.CrossRefPubMedPubMedCentral
44.
go back to reference Shimizu T, Szalay L, Choudhry MA, et al. Mechanism of salutary effects of androstenediol on hepatic function after trauma-hemorrhage: role of endothelial and inducible nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol. 2005;288:G244–50.CrossRefPubMed Shimizu T, Szalay L, Choudhry MA, et al. Mechanism of salutary effects of androstenediol on hepatic function after trauma-hemorrhage: role of endothelial and inducible nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol. 2005;288:G244–50.CrossRefPubMed
45.
go back to reference Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J Hepatol. 2015;62(1 Suppl):S121–30.CrossRefPubMedPubMedCentral Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J Hepatol. 2015;62(1 Suppl):S121–30.CrossRefPubMedPubMedCentral
46.
go back to reference Bellissant E, Annane D. Effect of hydrocortisone on phenylephrine—mean arterial pressure dose-response relationship in septic shock. Clin Pharmacol Ther. 2000;68:293–303.CrossRefPubMed Bellissant E, Annane D. Effect of hydrocortisone on phenylephrine—mean arterial pressure dose-response relationship in septic shock. Clin Pharmacol Ther. 2000;68:293–303.CrossRefPubMed
47.
go back to reference Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999;27:723–32.CrossRefPubMed Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999;27:723–32.CrossRefPubMed
48.
go back to reference Annane D, Sébille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.CrossRefPubMed Annane D, Sébille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.CrossRefPubMed
49.
go back to reference Sprung CL, Annane D, Keh D, CORTICUS Study Group, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.CrossRefPubMed Sprung CL, Annane D, Keh D, CORTICUS Study Group, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.CrossRefPubMed
50.
go back to reference Arabi YM, Aljumah A, Dabbagh O, et al. Low-dose hydrocortisone in patients with cirrhosis and septic shock: a randomized controlled trial. CMAJ. 2010;182:1971–7.CrossRefPubMedPubMedCentral Arabi YM, Aljumah A, Dabbagh O, et al. Low-dose hydrocortisone in patients with cirrhosis and septic shock: a randomized controlled trial. CMAJ. 2010;182:1971–7.CrossRefPubMedPubMedCentral
51.
Metadata
Title
Dehydroepiandrosterone sulfate and dehydroepiandrosterone sulfate/cortisol ratio in cirrhotic patients with septic shock: another sign of hepatoadrenal syndrome?
Authors
Ming-Hung Tsai
Hui-Chun Huang
Yun-Shing Peng
Yung-Chang Chen
Ya-Chung Tian
Chih-Wei Yang
Jau-Min Lien
Ji-Tseng Fang
Cheng-Shyong Wu
Sen-Yung Hsieh
Fa-Yauh Lee
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1768-0

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue