Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2018

Open Access 01-12-2018 | Research

Deficit of corpus callosum axons, reduced axon diameter and decreased area are markers of abnormal development of interhemispheric connections in autistic subjects

Authors: Jarek Wegiel, Wojciech Kaczmarski, Michael Flory, Veronica Martinez-Cerdeno, Thomas Wisniewski, Krzysztof Nowicki, Izabela Kuchna, Jerzy Wegiel

Published in: Acta Neuropathologica Communications | Issue 1/2018

Login to get access

Abstract

Introduction

In autism spectrum disorder, lack of coherence and of complex information processing, and narrowly focused interests and repetitive behaviors are considered a sign of long-range underconnectivity and short-range overconnectivity. The goal of this morphometric study of five anatomically and functionally different segments of the corpus callosum (CC) was to establish patterns of differences between long-range interhemispheric connections in nine neurotypical and nine autistic subjects.

Results

Electron microscopy revealed a significant reduction in average axon diameter and axon cross-sectional area in autistic subjects, and reduction in CC segment–specific diversification of connections of functionally different cortical regions. The study shows an increase in the percentage of small diameter axons (< 0.651 μm) and a decrease in the percentage of axons with large diameter (> 1.051 μm). The total number of small-diameter axons is reduced in segment I and III by 43% on average. The number of medium- and large-diameter axons is reduced in all five CC segments by an average of 49 and 72%, respectively.

Conclusions

The detected pattern of pathology suggests a failure of mechanisms controlling guidance of axons during development leading to axonal deficit, and failure of mechanisms controlling axon structure. A reduction in axon diameter may affect the velocity and volume of signal transmission, and distort functional specialization of CC segments. Significant deficits in axon number and reduction in axon size in all five CC segments appear to be substantial components of brain connectome integrity distortion which may contribute to the autism phenotype.
Literature
1.
go back to reference Aboitiz F, Montiel J (2003) one hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003;36:409–420 Aboitiz F, Montiel J (2003) one hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003;36:409–420
2.
go back to reference Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153CrossRef Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153CrossRef
3.
go back to reference American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. VA, ArlingtonCrossRef American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. VA, ArlingtonCrossRef
4.
go back to reference Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL et al (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in mammalian forebrain. Neuron 33:233–248CrossRef Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL et al (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in mammalian forebrain. Neuron 33:233–248CrossRef
5.
go back to reference Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326CrossRef Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326CrossRef
6.
go back to reference Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231CrossRef Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231CrossRef
7.
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discover rate: a practical and powerful approach to multiple testing. J Royal Statistical Society, Series B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discover rate: a practical and powerful approach to multiple testing. J Royal Statistical Society, Series B 57:289–300
8.
go back to reference Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F et al (2013) Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci 33:14501–14511CrossRef Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F et al (2013) Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci 33:14501–14511CrossRef
9.
go back to reference Casanova FM, El-Baz A, Elnakib A, Switala AE, Williams EL, Williams DL et al (2011) Quantitative analysis of the shape of the corpus callosum in autistic individuals. Autism 15:223–238CrossRef Casanova FM, El-Baz A, Elnakib A, Switala AE, Williams EL, Williams DL et al (2011) Quantitative analysis of the shape of the corpus callosum in autistic individuals. Autism 15:223–238CrossRef
10.
go back to reference Casanova MF, El-Baz A, Kamat SS, Dombroski BA, Khalifa F, Elnakib A et al (2013) Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 1:67CrossRef Casanova MF, El-Baz A, Kamat SS, Dombroski BA, Khalifa F, Elnakib A et al (2013) Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 1:67CrossRef
11.
go back to reference Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM et al (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303CrossRef Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM et al (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303CrossRef
12.
go back to reference Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local overconnectivity but long-distance disconnection. Curr Opin Neurobiol 23:225–230CrossRef Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local overconnectivity but long-distance disconnection. Curr Opin Neurobiol 23:225–230CrossRef
13.
go back to reference Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 13:1071–1079CrossRef Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 13:1071–1079CrossRef
14.
go back to reference Freitag CM, Luders E, Hulst HE, Narr KL, Thompson PM, Toga AW et al (2009) Total brain volume and corpus callosum size in medication-naïve adolescents and young adults with autism spectrum disorder. Biol Psychiatry 66:316–319CrossRef Freitag CM, Luders E, Hulst HE, Narr KL, Thompson PM, Toga AW et al (2009) Total brain volume and corpus callosum size in medication-naïve adolescents and young adults with autism spectrum disorder. Biol Psychiatry 66:316–319CrossRef
15.
16.
go back to reference Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111CrossRef Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111CrossRef
17.
go back to reference Gleason JR. Within subjects (repeated measures) ANOVA, including between subjects factors. Stata Technical Bulletin 1999;47:40–45 Gleason JR. Within subjects (repeated measures) ANOVA, including between subjects factors. Stata Technical Bulletin 1999;47:40–45
18.
go back to reference Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67:850–857CrossRef Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67:850–857CrossRef
19.
go back to reference Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112CrossRef Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112CrossRef
20.
go back to reference Hardan AY, Minshew NJ, Keshavan MS (2000) Corpus callosum size in autism. Neurology 55:1033–1036CrossRef Hardan AY, Minshew NJ, Keshavan MS (2000) Corpus callosum size in autism. Neurology 55:1033–1036CrossRef
21.
go back to reference Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S et al (2009) Corpus callosum volume in children with autism. Psychiatry Res Neuroimaging 174:57–61CrossRef Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S et al (2009) Corpus callosum volume in children with autism. Psychiatry Res Neuroimaging 174:57–61CrossRef
22.
go back to reference Heinsen H, Arzberger T, Schmitz C (2000) Celloidin mounting (embedding without infiltration) – a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigation. J Chem Neuroanat 20:49–59CrossRef Heinsen H, Arzberger T, Schmitz C (2000) Celloidin mounting (embedding without infiltration) – a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigation. J Chem Neuroanat 20:49–59CrossRef
23.
go back to reference Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Herron BM, Crow TJ (1999) The size and fiber composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122:99–110CrossRef Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Herron BM, Crow TJ (1999) The size and fiber composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122:99–110CrossRef
24.
go back to reference Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994CrossRef Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994CrossRef
25.
go back to reference Hughes JR (2007) Autism: the first firm finding = underconnectivity? Epilepsy Behav 11:20–24CrossRef Hughes JR (2007) Autism: the first firm finding = underconnectivity? Epilepsy Behav 11:20–24CrossRef
26.
go back to reference Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P et al (2012) Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol 124:67–79CrossRef Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P et al (2012) Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol 124:67–79CrossRef
27.
go back to reference Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17:951–961CrossRef Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17:951–961CrossRef
28.
go back to reference Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821CrossRef Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821CrossRef
29.
go back to reference Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313CrossRef Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313CrossRef
30.
go back to reference Kana RK, Keller TA, Minshew NJ, Just MA (2007) Inhibitory control in high functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry 62:198–206CrossRef Kana RK, Keller TA, Minshew NJ, Just MA (2007) Inhibitory control in high functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry 62:198–206CrossRef
31.
go back to reference Kumar A, Sundaram SK, Sivaswamy L, Behen ME, Makki MI, Ager J et al (2010) Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex 20:2103–2113CrossRef Kumar A, Sundaram SK, Sivaswamy L, Behen ME, Makki MI, Ager J et al (2010) Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex 20:2103–2113CrossRef
32.
go back to reference LaMantia AS, Rakic P (1990) Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol 291:520–537CrossRef LaMantia AS, Rakic P (1990) Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol 291:520–537CrossRef
33.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC et al (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223CrossRef Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC et al (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223CrossRef
34.
go back to reference Minshew NJ, Keller TA (2010) The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23:124–130CrossRef Minshew NJ, Keller TA (2010) The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23:124–130CrossRef
35.
go back to reference Minshew NJ, Sweeney J, Luna B (2002) Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems. Mol Psychiatry 7(Suppl 2):S14–S15CrossRef Minshew NJ, Sweeney J, Luna B (2002) Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems. Mol Psychiatry 7(Suppl 2):S14–S15CrossRef
36.
go back to reference Minshew NJ, Williams DL (2007) The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 65:945–950CrossRef Minshew NJ, Williams DL (2007) The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 65:945–950CrossRef
37.
go back to reference Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V et al (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155:1008–1021CrossRef Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V et al (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155:1008–1021CrossRef
38.
go back to reference Paul LK, Van Lancker D, Schieffer B, Dietrich R, Brown WS (2003) Communicative deficits in individuals with agenesis of the corpus callosum: nonliteral language and affective prosody. Brain Lang 85:313–324CrossRef Paul LK, Van Lancker D, Schieffer B, Dietrich R, Brown WS (2003) Communicative deficits in individuals with agenesis of the corpus callosum: nonliteral language and affective prosody. Brain Lang 85:313–324CrossRef
39.
go back to reference Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P (2012) Why do axons differ in caliber? J Neurosci 32:626–638CrossRef Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P (2012) Why do axons differ in caliber? J Neurosci 32:626–638CrossRef
40.
go back to reference Phillips KA, Stimpson CD, Smaers JB, Raghanti MA, Jacobs B, Popratiloff A et al (2015) The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry. Proc R Soc B 282:1535 Phillips KA, Stimpson CD, Smaers JB, Raghanti MA, Jacobs B, Popratiloff A et al (2015) The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry. Proc R Soc B 282:1535
41.
go back to reference Piven J, Bailey J, Ranson BJ, Arndt S (1997) An MRI study of the corpus callosum in autism. Am J Psychiatry 154:1051–1056CrossRef Piven J, Bailey J, Ranson BJ, Arndt S (1997) An MRI study of the corpus callosum in autism. Am J Psychiatry 154:1051–1056CrossRef
42.
go back to reference Prigge MBD, Lange N, Bigler ED, Merkley TL, Neeley ES, Abildskov TJ et al (2013) Corpus callosum area in children and adults with autism. Res Autism Spectr Disord 7:221–234CrossRef Prigge MBD, Lange N, Bigler ED, Merkley TL, Neeley ES, Abildskov TJ et al (2013) Corpus callosum area in children and adults with autism. Res Autism Spectr Disord 7:221–234CrossRef
43.
go back to reference Ren T, Anderson A, Shen W-B, Huang H, Plachez C, Zhang J et al (2006) Imaging, anatomical, molecular analysis of callosal formation in the developing human brain. Anat Record A 288A:191–204CrossRef Ren T, Anderson A, Shen W-B, Huang H, Plachez C, Zhang J et al (2006) Imaging, anatomical, molecular analysis of callosal formation in the developing human brain. Anat Record A 288A:191–204CrossRef
44.
go back to reference Richards LJ, Plachez C, Ren T (2004) Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 66:276–289CrossRef Richards LJ, Plachez C, Ren T (2004) Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 66:276–289CrossRef
45.
go back to reference Riise J, Pakkenberg B (2011) Stereological estimation of the total number of myelinated callosal fibers in human subjects. J Anat 218:277–284CrossRef Riise J, Pakkenberg B (2011) Stereological estimation of the total number of myelinated callosal fibers in human subjects. J Anat 218:277–284CrossRef
46.
go back to reference Rippon G, Brock J, Brown C, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the “new psychophysiology”. Int J Psychophysiol 63:164–172CrossRef Rippon G, Brock J, Brown C, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the “new psychophysiology”. Int J Psychophysiol 63:164–172CrossRef
47.
go back to reference Rushton WAH (1951) A theory on the effects of fibre size in medullated nerve. J Physiol 115:101–122CrossRef Rushton WAH (1951) A theory on the effects of fibre size in medullated nerve. J Physiol 115:101–122CrossRef
48.
go back to reference Seidl AH (2014) Regulation of conduction time along axons. Neuroscience 12:126–134CrossRef Seidl AH (2014) Regulation of conduction time along axons. Neuroscience 12:126–134CrossRef
49.
go back to reference Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron:49–65 Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron:49–65
50.
go back to reference Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23:289–299CrossRef Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23:289–299CrossRef
51.
go back to reference StataCorp. Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC. 2017 StataCorp. Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC. 2017
52.
go back to reference Uppal N, Wicinski B, Buxbaum JD, Heinsen H, Schmitz C, Hof PR (2014) Neuropathology of the anterior midcingulate cortex in young children with autism. J Neuropathol Exp Neurol 73:891–902CrossRef Uppal N, Wicinski B, Buxbaum JD, Heinsen H, Schmitz C, Hof PR (2014) Neuropathology of the anterior midcingulate cortex in young children with autism. J Neuropathol Exp Neurol 73:891–902CrossRef
53.
go back to reference van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H et al (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999CrossRef van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H et al (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999CrossRef
54.
go back to reference Vidal CN, Nicolson R, DeVito TJ, Hayashi KM, Geaga JA, Drost DJ et al (2006) Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiatry 60:218–225CrossRef Vidal CN, Nicolson R, DeVito TJ, Hayashi KM, Geaga JA, Drost DJ et al (2006) Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiatry 60:218–225CrossRef
55.
go back to reference Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138CrossRef Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138CrossRef
56.
go back to reference Wegiel J, Flory M, Kaczmarski W, Brown WT, Chadman K, Wisniewski T et al (2017) Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol 76:225–237CrossRef Wegiel J, Flory M, Kaczmarski W, Brown WT, Chadman K, Wisniewski T et al (2017) Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol 76:225–237CrossRef
57.
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770CrossRef Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770CrossRef
58.
go back to reference Westerhausen R, Grüner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329CrossRef Westerhausen R, Grüner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329CrossRef
59.
go back to reference Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155:997–1007CrossRef Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155:997–1007CrossRef
60.
go back to reference Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112:799–835CrossRef Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112:799–835CrossRef
61.
go back to reference Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609CrossRef Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609CrossRef
Metadata
Title
Deficit of corpus callosum axons, reduced axon diameter and decreased area are markers of abnormal development of interhemispheric connections in autistic subjects
Authors
Jarek Wegiel
Wojciech Kaczmarski
Michael Flory
Veronica Martinez-Cerdeno
Thomas Wisniewski
Krzysztof Nowicki
Izabela Kuchna
Jerzy Wegiel
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2018
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-018-0645-7

Other articles of this Issue 1/2018

Acta Neuropathologica Communications 1/2018 Go to the issue