Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Deficiency in hormone-sensitive lipase accelerates the development of pancreatic cancer in conditional KrasG12D mice

Authors: Mu Xu, Hui-Hua Chang, Xiaoman Jung, Aune Moro, Caroline Ei Ne Chou, Jonathan King, O. Joe Hines, James Sinnett-Smith, Enrique Rozengurt, Guido Eibl

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Hormone sensitive lipase (HSL) is a neutral lipase that preferentially catalyzes the hydrolysis of diacylglycerol contributing to triacylglycerol breakdown in the adipose tissue. HSL has been implicated to play a role in tumor cachexia, a debilitating syndrome characterized by progressive loss of adipose tissue. Consequently, pharmacological inhibitors of HSL have been proposed for the treatment of cancer-associated cachexia. In the present study we used the conditional KrasG12D (KC) mouse model of pancreatic ductal adenocarcinoma (PDAC) with a deficiency in HSL to determine the impact of HSL suppression on the development of PDAC.

Methods

KC;Hsl+/+ and KC;Hsl−/− mice were fed standard rodent chow for 20 weeks. At sacrifice, the incidence of PDAC was determined and inflammation in the mesenteric adipose tissue and pancreas was assessed histologically and by immunofluorescence. To determine statistical significance, ANOVA and two-tailed Student’s t-tests were performed. To compare PDAC incidence, a two-sided Fisher’s exact test was used.

Results

Compared to KC;Hsl+/+ mice, KC;Hsl−/− mice gained similar weight and displayed adipose tissue and pancreatic inflammation. In addition, KC;Hsl−/− mice had reduced levels of plasma insulin and leptin. Importantly, the increased adipose tissue and pancreatic inflammation was associated with a significant increase in PDAC incidence in KC;Hsl−/− mice.

Conclusions

HSL deficiency is associated with adipose tissue and pancreatic inflammation and accelerates PDAC development in the KC mouse model.
Literature
1.
go back to reference Kraemer FB, Shen WJ. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res. 2002;43(10):1585–94.CrossRefPubMed Kraemer FB, Shen WJ. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res. 2002;43(10):1585–94.CrossRefPubMed
4.
go back to reference Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, et al. Adipose triglyceride lipase contributes to Cancer-associated Cachexia. Science. 2011;333(6039):233–8.CrossRefPubMed Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, et al. Adipose triglyceride lipase contributes to Cancer-associated Cachexia. Science. 2011;333(6039):233–8.CrossRefPubMed
5.
go back to reference Agustsson T, Rydén M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P. Mechanism of increased lipolysis in Cancer Cachexia. Cancer Res. 2007;67(11):5531–7.CrossRefPubMed Agustsson T, Rydén M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P. Mechanism of increased lipolysis in Cancer Cachexia. Cancer Res. 2007;67(11):5531–7.CrossRefPubMed
6.
go back to reference Ogiyama T, Yamaguchi M, Kurikawa N, Honzumi S, Terayama K, Nagaoka N, Yamamoto Y, Kimura T, Sugiyama D, Inoue S-I. Design, synthesis, and pharmacological evaluation of a novel series of hormone sensitive lipase inhibitor. Bioorg Med Chem. 2017;25(17):4817–28.CrossRefPubMed Ogiyama T, Yamaguchi M, Kurikawa N, Honzumi S, Terayama K, Nagaoka N, Yamamoto Y, Kimura T, Sugiyama D, Inoue S-I. Design, synthesis, and pharmacological evaluation of a novel series of hormone sensitive lipase inhibitor. Bioorg Med Chem. 2017;25(17):4817–28.CrossRefPubMed
7.
go back to reference Vasilieva E, Dutta S, Malla RK, Martin BP, Spilling CD, Dupureur CM. Rat hormone sensitive lipase inhibition by Cyclipostins and their analogs. Bioorg Med Chem. 2015;23(5):944–52.CrossRefPubMedPubMedCentral Vasilieva E, Dutta S, Malla RK, Martin BP, Spilling CD, Dupureur CM. Rat hormone sensitive lipase inhibition by Cyclipostins and their analogs. Bioorg Med Chem. 2015;23(5):944–52.CrossRefPubMedPubMedCentral
8.
9.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting Cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRefPubMed Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting Cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRefPubMed
10.
go back to reference Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000;97(2):787–92.CrossRefPubMedPubMedCentral Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000;97(2):787–92.CrossRefPubMedPubMedCentral
11.
go back to reference Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.CrossRefPubMed Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.CrossRefPubMed
12.
go back to reference Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G. Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res. 2007;67(15):7068–71.CrossRefPubMed Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G. Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res. 2007;67(15):7068–71.CrossRefPubMed
13.
go back to reference Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4(3):329–46.CrossRef Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4(3):329–46.CrossRef
14.
go back to reference Hertzer KM, Xu M, Moro A, Dawson DW, Du L, Li G, Chang HH, Stark AP, Jung X, Hines OJ, et al. Robust early inflammation of the Peripancreatic visceral adipose tissue during diet-induced obesity in the KrasG12D model of pancreatic Cancer. Pancreas. 2016;45(3):458–65.CrossRefPubMedPubMedCentral Hertzer KM, Xu M, Moro A, Dawson DW, Du L, Li G, Chang HH, Stark AP, Jung X, Hines OJ, et al. Robust early inflammation of the Peripancreatic visceral adipose tissue during diet-induced obesity in the KrasG12D model of pancreatic Cancer. Pancreas. 2016;45(3):458–65.CrossRefPubMedPubMedCentral
15.
go back to reference Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25(5):579–86.CrossRefPubMed Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25(5):579–86.CrossRefPubMed
16.
go back to reference Chang HH, Moro A, Takakura K, Su HY, Mo A, Nakanishi M, Waldron RT, French SW, Dawson DW, Hines OJ, et al. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS One. 2017;12(9):e0184455.CrossRefPubMedPubMedCentral Chang HH, Moro A, Takakura K, Su HY, Mo A, Nakanishi M, Waldron RT, French SW, Dawson DW, Hines OJ, et al. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS One. 2017;12(9):e0184455.CrossRefPubMedPubMedCentral
17.
go back to reference Dawson DW, Hertzer K, Moro A, Donald G, Chang HH, Go VL, Pandol SJ, Lugea A, Gukovskaya AS, Li G, et al. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila). 2013;6(10):1064–73.CrossRef Dawson DW, Hertzer K, Moro A, Donald G, Chang HH, Go VL, Pandol SJ, Lugea A, Gukovskaya AS, Li G, et al. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila). 2013;6(10):1064–73.CrossRef
18.
go back to reference Kraemer FB, Shen WJ. Hormone-sensitive lipase knockouts. Nutr Metab (Lond). 2006;3:12.CrossRef Kraemer FB, Shen WJ. Hormone-sensitive lipase knockouts. Nutr Metab (Lond). 2006;3:12.CrossRef
19.
go back to reference Shen WJ, Yu Z, Patel S, Jue D, Liu LF, Kraemer FB. Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim Biophys Acta. 2011;1811(1):9–16.CrossRefPubMed Shen WJ, Yu Z, Patel S, Jue D, Liu LF, Kraemer FB. Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim Biophys Acta. 2011;1811(1):9–16.CrossRefPubMed
20.
go back to reference Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem. 2002;277(7):4806–15.CrossRefPubMed Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem. 2002;277(7):4806–15.CrossRefPubMed
21.
go back to reference Mulder H, Holst LS, Svensson H, Degerman E, Sundler F, Ahren B, Rorsman P, Holm C. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes. 1999;48(1):228–32.CrossRefPubMed Mulder H, Holst LS, Svensson H, Degerman E, Sundler F, Ahren B, Rorsman P, Holm C. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes. 1999;48(1):228–32.CrossRefPubMed
22.
go back to reference Albert JS, Yerges-Armstrong LM, Horenstein RB, Pollin TI, Sreenivasan UT, Chai S, Blaner WS, Snitker S, O'Connell JR, Gong DW, et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med. 2014;370(24):2307–15.CrossRefPubMedPubMedCentral Albert JS, Yerges-Armstrong LM, Horenstein RB, Pollin TI, Sreenivasan UT, Chai S, Blaner WS, Snitker S, O'Connell JR, Gong DW, et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med. 2014;370(24):2307–15.CrossRefPubMedPubMedCentral
23.
go back to reference Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, Mitchell GA. The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res. 2001;9(2):119–28.CrossRefPubMed Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, Mitchell GA. The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res. 2001;9(2):119–28.CrossRefPubMed
24.
go back to reference Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta. 2009;1791(6):494–500.CrossRefPubMed Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta. 2009;1791(6):494–500.CrossRefPubMed
25.
go back to reference Zimmermann R, Haemmerle G, Wagner EM, Strauss JG, Kratky D, Zechner R. Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. J Lipid Res. 2003;44(11):2089–99.CrossRefPubMed Zimmermann R, Haemmerle G, Wagner EM, Strauss JG, Kratky D, Zechner R. Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. J Lipid Res. 2003;44(11):2089–99.CrossRefPubMed
26.
go back to reference Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507.
27.
go back to reference Shen WJ, Liang Y, Wang J, Harada K, Patel S, Michie SA, Osuga J, Ishibashi S, Kraemer FB. Regulation of hormone-sensitive lipase in islets. Diabetes Res Clin Pract. 2007;75(1):14–26.CrossRefPubMed Shen WJ, Liang Y, Wang J, Harada K, Patel S, Michie SA, Osuga J, Ishibashi S, Kraemer FB. Regulation of hormone-sensitive lipase in islets. Diabetes Res Clin Pract. 2007;75(1):14–26.CrossRefPubMed
Metadata
Title
Deficiency in hormone-sensitive lipase accelerates the development of pancreatic cancer in conditional KrasG12D mice
Authors
Mu Xu
Hui-Hua Chang
Xiaoman Jung
Aune Moro
Caroline Ei Ne Chou
Jonathan King
O. Joe Hines
James Sinnett-Smith
Enrique Rozengurt
Guido Eibl
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4713-y

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine