Skip to main content
Top
Published in: Molecular Autism 1/2022

Open Access 01-12-2022 | Research

Deep phenotyping reveals movement phenotypes in mouse neurodevelopmental models

Authors: Ugne Klibaite, Mikhail Kislin, Jessica L. Verpeut, Silke Bergeler, Xiaoting Sun, Joshua W. Shaevitz, Samuel S.-H. Wang

Published in: Molecular Autism | Issue 1/2022

Login to get access

Abstract

Background

Repetitive action, resistance to environmental change and fine motor disruptions are hallmarks of autism spectrum disorder (ASD) and other neurodevelopmental disorders, and vary considerably from individual to individual. In animal models, conventional behavioral phenotyping captures such fine-scale variations incompletely. Here we observed male and female C57BL/6J mice to methodically catalog adaptive movement over multiple days and examined two rodent models of developmental disorders against this dynamic baseline. We then investigated the behavioral consequences of a cerebellum-specific deletion in Tsc1 protein and a whole-brain knockout in Cntnap2 protein in mice. Both of these mutations are found in clinical conditions and have been associated with ASD.

Methods

We used advances in computer vision and deep learning, namely a generalized form of high-dimensional statistical analysis, to develop a framework for characterizing mouse movement on multiple timescales using a single popular behavioral assay, the open-field test. The pipeline takes virtual markers from pose estimation to find behavior clusters and generate wavelet signatures of behavior classes. We measured spatial and temporal habituation to a new environment across minutes and days, different types of self-grooming, locomotion and gait.

Results

Both Cntnap2 knockouts and L7-Tsc1 mutants showed forelimb lag during gait. L7-Tsc1 mutants and Cntnap2 knockouts showed complex defects in multi-day adaptation, lacking the tendency of wild-type mice to spend progressively more time in corners of the arena. In L7-Tsc1 mutant mice, failure to adapt took the form of maintained ambling, turning and locomotion, and an overall decrease in grooming. However, adaptation in these traits was similar between wild-type mice and Cntnap2 knockouts. L7-Tsc1 mutant and Cntnap2 knockout mouse models showed different patterns of behavioral state occupancy.

Limitations

Genetic risk factors for autism are numerous, and we tested only two. Our pipeline was only done under conditions of free behavior. Testing under task or social conditions would reveal more information about behavioral dynamics and variability.

Conclusions

Our automated pipeline for deep phenotyping successfully captures model-specific deviations in adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported deficits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implementation in clinical settings as quantitative diagnosis criteria.
Appendix
Available only for authorised users
Literature
1.
go back to reference Silverman JL, Tolu SS, Barkan CL, Crawley JN. Repetitive self-grooming behavior in the btbr mouse model of autism is blocked by the mglur5 antagonist mpep. Neuropsychopharmacology. 2010;35(4):976–89.PubMed Silverman JL, Tolu SS, Barkan CL, Crawley JN. Repetitive self-grooming behavior in the btbr mouse model of autism is blocked by the mglur5 antagonist mpep. Neuropsychopharmacology. 2010;35(4):976–89.PubMed
2.
go back to reference Crawley JN. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci. 2012;14(3):293.PubMedPubMedCentral Crawley JN. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci. 2012;14(3):293.PubMedPubMedCentral
3.
go back to reference Rinehart NJ, Bellgrove MA, Tonge BJ, Brereton AV, Howells-Rankin D, Bradshaw JL. An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: further evidence for a motor planning deficit. J Autism Dev Disord. 2006;36(6):757–67.PubMedPubMedCentral Rinehart NJ, Bellgrove MA, Tonge BJ, Brereton AV, Howells-Rankin D, Bradshaw JL. An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: further evidence for a motor planning deficit. J Autism Dev Disord. 2006;36(6):757–67.PubMedPubMedCentral
4.
go back to reference Staples KL, Reid G. Fundamental movement skills and autism spectrum disorders. J Autism Dev Disord. 2010;40(2):209–17.PubMed Staples KL, Reid G. Fundamental movement skills and autism spectrum disorders. J Autism Dev Disord. 2010;40(2):209–17.PubMed
5.
go back to reference Piek JP, Dyck MJ. Sensory-motor deficits in children with developmental coordination disorder, attention deficit hyperactivity disorder and autistic disorder. Hum Mov Sci. 2004;23(3–4):475–88.PubMed Piek JP, Dyck MJ. Sensory-motor deficits in children with developmental coordination disorder, attention deficit hyperactivity disorder and autistic disorder. Hum Mov Sci. 2004;23(3–4):475–88.PubMed
6.
go back to reference First MB. DSM-5 Handbook of Differential Diagnosis. Washington, D.C. : American Psychiatric Publishing; 2014 First MB. DSM-5 Handbook of Differential Diagnosis. Washington, D.C. : American Psychiatric Publishing; 2014
7.
go back to reference Association AP, et al. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Publishing; 2013. Association AP, et al. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Publishing; 2013.
9.
go back to reference Chadman KK, Yang M, Crawley JN. Criteria for validating mouse models of psychiatric diseases. Am J Med Genet B Neuropsychiatr Genet. 2009;150(1):1–11. Chadman KK, Yang M, Crawley JN. Criteria for validating mouse models of psychiatric diseases. Am J Med Genet B Neuropsychiatr Genet. 2009;150(1):1–11.
10.
go back to reference Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology. 1997;132(2):107–24.PubMed Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology. 1997;132(2):107–24.PubMed
11.
go back to reference Crawley JN. Behavioral phenotyping of rodents. Comp Med. 2003;53(2):140–6.PubMed Crawley JN. Behavioral phenotyping of rodents. Comp Med. 2003;53(2):140–6.PubMed
12.
go back to reference Walsh RN, Cummins RA. The open-field test: a critical review. Psychol Bull. 1976;83(3):482.PubMed Walsh RN, Cummins RA. The open-field test: a critical review. Psychol Bull. 1976;83(3):482.PubMed
14.
go back to reference Brown AE, De Bivort B. Ethology as a physical science. Nat Phys. 2018;14(7):653. Brown AE, De Bivort B. Ethology as a physical science. Nat Phys. 2018;14(7):653.
15.
go back to reference Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational neuroethology: a call to action. Neuron. 2019;104(1):11–24.PubMedPubMedCentral Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational neuroethology: a call to action. Neuron. 2019;104(1):11–24.PubMedPubMedCentral
16.
go back to reference Pereira TD, Shaevitz JW, Murthy M. Quantifying behavior to understand the brain. Nat Neurosci. 2020;23(12):1537–49. PubMedPubMedCentral Pereira TD, Shaevitz JW, Murthy M. Quantifying behavior to understand the brain. Nat Neurosci. 2020;23(12):1537–49. PubMedPubMedCentral
17.
go back to reference Gould TD. Mood and anxiety related phenotypes in mice: characterization using behavioral tests, vol. 2. New York: Springer; 2009. Gould TD. Mood and anxiety related phenotypes in mice: characterization using behavioral tests, vol. 2. New York: Springer; 2009.
18.
go back to reference Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci. 2014;17(11):1455.PubMed Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci. 2014;17(11):1455.PubMed
19.
go back to reference Berman GJ, Choi DM, Bialek W, Shaevitz JW. Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface. 2014;11(99):20140672.PubMedPubMedCentral Berman GJ, Choi DM, Bialek W, Shaevitz JW. Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface. 2014;11(99):20140672.PubMedPubMedCentral
20.
go back to reference Klibaite U, Berman GJ, Cande J, Stern DL, Shaevitz JW. An unsupervised method for quantifying the behavior of paired animals. Phys Biol. 2017;14(1):015006.PubMedPubMedCentral Klibaite U, Berman GJ, Cande J, Stern DL, Shaevitz JW. An unsupervised method for quantifying the behavior of paired animals. Phys Biol. 2017;14(1):015006.PubMedPubMedCentral
21.
go back to reference Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SS-H, Murthy M, Shaevitz JW. Fast animal pose estimation using deep neural networks. Nat Methods. 2019;16(1):117.PubMed Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SS-H, Murthy M, Shaevitz JW. Fast animal pose estimation using deep neural networks. Nat Methods. 2019;16(1):117.PubMed
22.
go back to reference Klibaite U, Shaevitz JW. Paired fruit flies synchronize behavior: uncovering social interactions in drosophila melanogaster. PLoS Comput Biol. 2020;16(10):1008230. Klibaite U, Shaevitz JW. Paired fruit flies synchronize behavior: uncovering social interactions in drosophila melanogaster. PLoS Comput Biol. 2020;16(10):1008230.
23.
go back to reference Ferri SL, Abel T, Brodkin ES. Sex differences in autism spectrum disorder: a review. Curr Psychiatry Rep. 2018;20(2):1–17. Ferri SL, Abel T, Brodkin ES. Sex differences in autism spectrum disorder: a review. Curr Psychiatry Rep. 2018;20(2):1–17.
24.
go back to reference Lathe R. The individuality of mice. Genes Brain Behav. 2004;3(6):317–27.PubMed Lathe R. The individuality of mice. Genes Brain Behav. 2004;3(6):317–27.PubMed
26.
go back to reference Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017;134(4):537–66.PubMedPubMedCentral Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017;134(4):537–66.PubMedPubMedCentral
27.
go back to reference Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, et al. Absence of cntnap2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147(1):235–46.PubMedPubMedCentral Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, et al. Absence of cntnap2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147(1):235–46.PubMedPubMedCentral
28.
go back to reference Brunner D, Kabitzke P, He D, Cox K, Thiede L, Hanania T, Sabath E, Alexandrov V, Saxe M, Peles E, et al. Comprehensive analysis of the 16p11.2 deletion and null cntnap2 mouse models of autism spectrum disorder. PLoS ONE. 2015;10:e0134572.PubMedPubMedCentral Brunner D, Kabitzke P, He D, Cox K, Thiede L, Hanania T, Sabath E, Alexandrov V, Saxe M, Peles E, et al. Comprehensive analysis of the 16p11.2 deletion and null cntnap2 mouse models of autism spectrum disorder. PLoS ONE. 2015;10:e0134572.PubMedPubMedCentral
29.
go back to reference Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M. Autistic-like behaviour and cerebellar dysfunction in purkinje cell tsc1 mutant mice. Nature. 2012;488(7413):647.PubMedPubMedCentral Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M. Autistic-like behaviour and cerebellar dysfunction in purkinje cell tsc1 mutant mice. Nature. 2012;488(7413):647.PubMedPubMedCentral
30.
go back to reference Cambiaghi M, Cursi M, Magri L, Castoldi V, Comi G, Minicucci F, Galli R, Leocani L. Behavioural and eeg effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex. Neuropharmacology. 2013;67:1–7.PubMed Cambiaghi M, Cursi M, Magri L, Castoldi V, Comi G, Minicucci F, Galli R, Leocani L. Behavioural and eeg effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex. Neuropharmacology. 2013;67:1–7.PubMed
31.
go back to reference Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20(12):1744.PubMedPubMedCentral Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20(12):1744.PubMedPubMedCentral
32.
go back to reference Kwiatkowski D.J, Zhang H, Bandura J.L, Heiberger K.M, Glogauer M, el-Hashemite N, Onda H. A mouse model of tsc1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70s6 kinase activity in tsc1 null cells. Hum Mol Genet. 2002;11(5):525–34.PubMed Kwiatkowski D.J, Zhang H, Bandura J.L, Heiberger K.M, Glogauer M, el-Hashemite N, Onda H. A mouse model of tsc1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70s6 kinase activity in tsc1 null cells. Hum Mol Genet. 2002;11(5):525–34.PubMed
33.
go back to reference Sanberg PR, Zoloty S, Willis R, Ticarich C, Rhoads K, Nagy R, Mitchell S, Laforest A, Jenks J, Harkabus L, et al. Digiscan activity: automated measurement of thigmotactic and stereotypic behavior in rats. Pharmacol Biochem Behav. 1987;27(3):569–72.PubMed Sanberg PR, Zoloty S, Willis R, Ticarich C, Rhoads K, Nagy R, Mitchell S, Laforest A, Jenks J, Harkabus L, et al. Digiscan activity: automated measurement of thigmotactic and stereotypic behavior in rats. Pharmacol Biochem Behav. 1987;27(3):569–72.PubMed
34.
go back to reference Rudeck J, Vogl S, Banneke S, Schönfelder G, Lewejohann L. Repeatability analysis improves the reliability of behavioral data. PLoS ONE. 2020;15(4):0230900. Rudeck J, Vogl S, Banneke S, Schönfelder G, Lewejohann L. Repeatability analysis improves the reliability of behavioral data. PLoS ONE. 2020;15(4):0230900.
35.
go back to reference Bodden C, Siestrup S, Palme R, Kaiser S, Sachser N, Richter SH. Evidence-based severity assessment: impact of repeated versus single open-field testing on welfare in c57bl/6j mice. Behav Brain Res. 2018;336:261–8.PubMed Bodden C, Siestrup S, Palme R, Kaiser S, Sachser N, Richter SH. Evidence-based severity assessment: impact of repeated versus single open-field testing on welfare in c57bl/6j mice. Behav Brain Res. 2018;336:261–8.PubMed
36.
go back to reference Martín-Fernández J-A, Daunis i Estadella J, Mateu i Figueras G. On the interpretation of differences between groups for compositional data. SORT. 2015;39(2):231–52. Martín-Fernández J-A, Daunis i Estadella J, Mateu i Figueras G. On the interpretation of differences between groups for compositional data. SORT. 2015;39(2):231–52.
37.
go back to reference Van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008;9(11):2579–605. Van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008;9(11):2579–605.
38.
go back to reference Berman GJ, Bialek W, Shaevitz JW. Predictability and hierarchy in drosophila behavior. Proc Natl Acad Sci. 2016;113(42):11943–8.PubMedPubMedCentral Berman GJ, Bialek W, Shaevitz JW. Predictability and hierarchy in drosophila behavior. Proc Natl Acad Sci. 2016;113(42):11943–8.PubMedPubMedCentral
39.
go back to reference Benjamini Y, Fonio E, Galili T, Havkin GZ, Golani I. Quantifying the buildup in extent and complexity of free exploration in mice. Proc Natl Acad Sci. 2011;108(Supplement 3):15580–7.PubMedPubMedCentral Benjamini Y, Fonio E, Galili T, Havkin GZ, Golani I. Quantifying the buildup in extent and complexity of free exploration in mice. Proc Natl Acad Sci. 2011;108(Supplement 3):15580–7.PubMedPubMedCentral
40.
go back to reference Chang AD, Berges VA, Chung SJ, Fridman GY, Baraban JM, Reti IM. High-frequency stimulation at the subthalamic nucleus suppresses excessive self-grooming in autism-like mouse models. Neuropsychopharmacology. 2016;41(7):1813–21.PubMed Chang AD, Berges VA, Chung SJ, Fridman GY, Baraban JM, Reti IM. High-frequency stimulation at the subthalamic nucleus suppresses excessive self-grooming in autism-like mouse models. Neuropsychopharmacology. 2016;41(7):1813–21.PubMed
41.
go back to reference Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN. Sociability and motor functions in shank1 mutant mice. Brain Res. 2011;1380:120–37.PubMed Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN. Sociability and motor functions in shank1 mutant mice. Brain Res. 2011;1380:120–37.PubMed
43.
go back to reference Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, Baird G. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.PubMed Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, Baird G. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.PubMed
44.
go back to reference Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord. 2010;40(10):1227–40.PubMed Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord. 2010;40(10):1227–40.PubMed
45.
go back to reference Esposito G, Venuti P. Analysis of toddlers’ gait after six months of independent walking to identify autism: a preliminary study. Percept Mot Skills. 2008;106(1):259–69.PubMed Esposito G, Venuti P. Analysis of toddlers’ gait after six months of independent walking to identify autism: a preliminary study. Percept Mot Skills. 2008;106(1):259–69.PubMed
46.
go back to reference Rinehart NJ, Tonge BJ, Bradshaw JL, Iansek R, Enticott PG, McGinley J. Gait function in high-functioning autism and Asperger’s disorder. Eur Child Adolesc Psychiatry. 2006;15(5):256–64.PubMed Rinehart NJ, Tonge BJ, Bradshaw JL, Iansek R, Enticott PG, McGinley J. Gait function in high-functioning autism and Asperger’s disorder. Eur Child Adolesc Psychiatry. 2006;15(5):256–64.PubMed
47.
go back to reference Machado AS, Darmohray DM, Fayad J, Marques HG, Carey MR. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. Elife. 2015;4:07892. Machado AS, Darmohray DM, Fayad J, Marques HG, Carey MR. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. Elife. 2015;4:07892.
48.
go back to reference Machado AS, Marques HG, Duarte DF, Darmohray DM, Carey MR. Shared and specific signatures of locomotor ataxia in mutant mice. eLife. 2020;9:e55356 Machado AS, Marques HG, Duarte DF, Darmohray DM, Carey MR. Shared and specific signatures of locomotor ataxia in mutant mice. eLife. 2020;9:e55356
49.
go back to reference Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz AD, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, et al. The impact of sex on gene expression across human tissues. Science. 2020;369(6509):eaba3066.PubMedPubMedCentral Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz AD, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, et al. The impact of sex on gene expression across human tissues. Science. 2020;369(6509):eaba3066.PubMedPubMedCentral
50.
go back to reference Gdalyahu A, Lazaro M, Penagarikano O, Golshani P, Trachtenberg JT, Geschwind DH. The autism related protein contactin-associated protein-like 2 (cntnap2) stabilizes new spines: an in vivo mouse study. PLoS ONE. 2015;10(5):0125633. Gdalyahu A, Lazaro M, Penagarikano O, Golshani P, Trachtenberg JT, Geschwind DH. The autism related protein contactin-associated protein-like 2 (cntnap2) stabilizes new spines: an in vivo mouse study. PLoS ONE. 2015;10(5):0125633.
Metadata
Title
Deep phenotyping reveals movement phenotypes in mouse neurodevelopmental models
Authors
Ugne Klibaite
Mikhail Kislin
Jessica L. Verpeut
Silke Bergeler
Xiaoting Sun
Joshua W. Shaevitz
Samuel S.-H. Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2022
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-022-00492-8

Other articles of this Issue 1/2022

Molecular Autism 1/2022 Go to the issue