Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Research

Deep learning approaches for differentiating thyroid nodules with calcification: a two-center study

Authors: Chen Chen, Yuanzhen Liu, Jincao Yao, Kai Wang, Maoliang Zhang, Fang Shi, Yuan Tian, Lu Gao, Yajun Ying, Qianmeng Pan, Hui Wang, Jinxin Wu, Xiaoqing Qi, Yifan Wang, Dong Xu

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Calcification is a common phenomenon in both benign and malignant thyroid nodules. However, the clinical significance of calcification remains unclear. Therefore, we explored a more objective method for distinguishing between benign and malignant thyroid calcified nodules.

Methods

This retrospective study, conducted at two centers, involved a total of 631 thyroid nodules, all of which were pathologically confirmed. Ultrasound image sets were employed for analysis. The primary evaluation index was the area under the receiver-operator characteristic curve (AUROC). We compared the diagnostic performance of deep learning (DL) methods with that of radiologists and determined whether DL could enhance the diagnostic capabilities of radiologists.

Results

The Xception classification model exhibited the highest performance, achieving an AUROC of up to 0.970, followed by the DenseNet169 model, which attained an AUROC of up to 0.959. Notably, both DL models outperformed radiologists (P < 0.05). The success of the Xception model can be attributed to its incorporation of deep separable convolution, which effectively reduces the model’s parameter count. This feature enables the model to capture features more effectively during the feature extraction process, resulting in superior performance, particularly when dealing with limited data.

Conclusions

This study conclusively demonstrated that DL outperformed radiologists in differentiating between benign and malignant calcified thyroid nodules. Additionally, the diagnostic capabilities of radiologists could be enhanced with the aid of DL.
Literature
1.
go back to reference Karkada M, Costa AF, Imran SA, Hart RD, Bullock M, Ilie G, et al. Incomplete thyroid Ultrasound reports for patients with thyroid nodules: implications regarding Risk Assessment and Management. AJR Am J Roentgenol. 2018;211(6):1348–53.CrossRefPubMed Karkada M, Costa AF, Imran SA, Hart RD, Bullock M, Ilie G, et al. Incomplete thyroid Ultrasound reports for patients with thyroid nodules: implications regarding Risk Assessment and Management. AJR Am J Roentgenol. 2018;211(6):1348–53.CrossRefPubMed
2.
go back to reference Kobaly K, Kim CS, Mandel SJ. Contemporary management of thyroid nodules. Annu Rev Med. 2022;73:517–28.CrossRefPubMed Kobaly K, Kim CS, Mandel SJ. Contemporary management of thyroid nodules. Annu Rev Med. 2022;73:517–28.CrossRefPubMed
3.
go back to reference Alexander EK, Doherty GM, Barletta JA. Management of thyroid nodules. Lancet Diabetes Endocrinol. 2022;10(7):540–8.CrossRefPubMed Alexander EK, Doherty GM, Barletta JA. Management of thyroid nodules. Lancet Diabetes Endocrinol. 2022;10(7):540–8.CrossRefPubMed
4.
go back to reference Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al. 2015 American thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the American thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid Cancer. Thyroid 2016;26(1). Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al. 2015 American thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the American thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid Cancer. Thyroid 2016;26(1).
5.
go back to reference Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol. 2021;22(12):2094–123. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules:. Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol. 2021;22(12):2094–123. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules:.
6.
go back to reference Todsen T, Bennedbaek FN, Kiss K, Hegedüs L. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Head Neck. 2021;43(3):1009–13.CrossRefPubMed Todsen T, Bennedbaek FN, Kiss K, Hegedüs L. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Head Neck. 2021;43(3):1009–13.CrossRefPubMed
7.
go back to reference Lu Z, Mu Y, Zhu H, Luo Y, Kong Q, Dou J, et al. Clinical value of using ultrasound to assess calcification patterns in thyroid nodules. World J Surg. 2011;35(1):122–7.CrossRefPubMed Lu Z, Mu Y, Zhu H, Luo Y, Kong Q, Dou J, et al. Clinical value of using ultrasound to assess calcification patterns in thyroid nodules. World J Surg. 2011;35(1):122–7.CrossRefPubMed
8.
go back to reference Chen G, Zhu XQ, Zou X, Yao J, Liang JX, Huang HB, et al. Retrospective analysis of thyroid nodules by clinical and pathological characteristics, and ultrasonographically detected calcification correlated to thyroid carcinoma in South China. Eur Surg Res. 2009;42(3):137–42.CrossRefPubMed Chen G, Zhu XQ, Zou X, Yao J, Liang JX, Huang HB, et al. Retrospective analysis of thyroid nodules by clinical and pathological characteristics, and ultrasonographically detected calcification correlated to thyroid carcinoma in South China. Eur Surg Res. 2009;42(3):137–42.CrossRefPubMed
9.
go back to reference Khoo MLC, Asa SL, Witterick IJ, Freeman JL. Thyroid calcification and its association with thyroid carcinoma. Head Neck. 2002;24(7):651–5.CrossRefPubMed Khoo MLC, Asa SL, Witterick IJ, Freeman JL. Thyroid calcification and its association with thyroid carcinoma. Head Neck. 2002;24(7):651–5.CrossRefPubMed
10.
go back to reference Yin L, Zhang W, Bai W, He W. Relationship between morphologic characteristics of Ultrasonic calcification in thyroid nodules and thyroid carcinoma. Ultrasound Med Biol. 2020;46(1):20–5.CrossRefPubMed Yin L, Zhang W, Bai W, He W. Relationship between morphologic characteristics of Ultrasonic calcification in thyroid nodules and thyroid carcinoma. Ultrasound Med Biol. 2020;46(1):20–5.CrossRefPubMed
11.
go back to reference Lacout A, Chevenet C, Thariat J, Marcy PY. Thyroid calcifications: a pictorial essay. J Clin Ultrasound. 2016;44(4):245–51.CrossRefPubMed Lacout A, Chevenet C, Thariat J, Marcy PY. Thyroid calcifications: a pictorial essay. J Clin Ultrasound. 2016;44(4):245–51.CrossRefPubMed
12.
go back to reference Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017;14(5):587–95.CrossRefPubMed Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017;14(5):587–95.CrossRefPubMed
13.
go back to reference Tappouni RR, Itri JN, McQueen TS, Lalwani N, Ou JJ. ACR TI-RADS: pitfalls, solutions, and future directions. Radiographics. 2019;39(7):2040–52.CrossRefPubMed Tappouni RR, Itri JN, McQueen TS, Lalwani N, Ou JJ. ACR TI-RADS: pitfalls, solutions, and future directions. Radiographics. 2019;39(7):2040–52.CrossRefPubMed
14.
go back to reference Lee J, Lee SY, Cha S-H, Cho BS, Kang MH, Lee O-J. Fine-needle aspiration of thyroid nodules with macrocalcification. Thyroid. 2013;23(9):1106–12.CrossRefPubMed Lee J, Lee SY, Cha S-H, Cho BS, Kang MH, Lee O-J. Fine-needle aspiration of thyroid nodules with macrocalcification. Thyroid. 2013;23(9):1106–12.CrossRefPubMed
15.
go back to reference Erdem Toslak I, Martin B, Barkan GA, Kılıç AI, Lim-Dunham JE. Patterns of Sonographically detectable echogenic Foci in Pediatric thyroid carcinoma with corresponding histopathology: an observational study. AJNR Am J Neuroradiol. 2018;39(1):156–61.CrossRefPubMedPubMedCentral Erdem Toslak I, Martin B, Barkan GA, Kılıç AI, Lim-Dunham JE. Patterns of Sonographically detectable echogenic Foci in Pediatric thyroid carcinoma with corresponding histopathology: an observational study. AJNR Am J Neuroradiol. 2018;39(1):156–61.CrossRefPubMedPubMedCentral
16.
go back to reference Gwon HY, Na DG, Noh BJ, Paik W, Yoon SJ, Choi SJ, et al. Thyroid nodules with isolated macrocalcifications: malignancy risk of isolated macrocalcifications and postoperative risk stratification of malignant tumors manifesting as isolated macrocalcifications. Korean J Radiol. 2020;21(5):605–13.CrossRefPubMedPubMedCentral Gwon HY, Na DG, Noh BJ, Paik W, Yoon SJ, Choi SJ, et al. Thyroid nodules with isolated macrocalcifications: malignancy risk of isolated macrocalcifications and postoperative risk stratification of malignant tumors manifesting as isolated macrocalcifications. Korean J Radiol. 2020;21(5):605–13.CrossRefPubMedPubMedCentral
17.
go back to reference Shin HS, Na DG, Paik W, Yoon SJ, Gwon HY, Noh BJ, et al. Malignancy risk stratification of thyroid nodules with macrocalcification and Rim Calcification based on Ultrasound patterns. Korean J Radiol. 2021;22(4):663–71.CrossRefPubMedPubMedCentral Shin HS, Na DG, Paik W, Yoon SJ, Gwon HY, Noh BJ, et al. Malignancy risk stratification of thyroid nodules with macrocalcification and Rim Calcification based on Ultrasound patterns. Korean J Radiol. 2021;22(4):663–71.CrossRefPubMedPubMedCentral
18.
go back to reference Liu H, Chen Y, Zhang Y, Wang L, Luo R, Wu H, et al. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Eur Radiol. 2021;31(8):5902–12.CrossRefPubMed Liu H, Chen Y, Zhang Y, Wang L, Luo R, Wu H, et al. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Eur Radiol. 2021;31(8):5902–12.CrossRefPubMed
19.
go back to reference Patel NR, Setya K, Pradhan S, Lu M, Demer LL, Tintut Y. Microarchitectural changes of Cardiovascular calcification in response to in vivo interventions using deep-learning segmentation and computed Tomography Radiomics. Arterioscler Thromb Vasc Biol. 2022;42(8):e228–e41.CrossRefPubMedPubMedCentral Patel NR, Setya K, Pradhan S, Lu M, Demer LL, Tintut Y. Microarchitectural changes of Cardiovascular calcification in response to in vivo interventions using deep-learning segmentation and computed Tomography Radiomics. Arterioscler Thromb Vasc Biol. 2022;42(8):e228–e41.CrossRefPubMedPubMedCentral
20.
go back to reference Nam JG, Kim M, Park J, Hwang EJ, Lee JH, Hong JH et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J. 2021;57(5). Nam JG, Kim M, Park J, Hwang EJ, Lee JH, Hong JH et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J. 2021;57(5).
21.
go back to reference Yao Jincao LZ, Yue Wenwen F, Bojian L, Wei O, Di F, Na L, Yidan X, Jing C, Wencong Y, Chen W, Lijing W, Liping L, Junping W, Peiying. Xu Hui-Xiong, Xu Dong. DeepThy-Net: a Multimodal Deep Learning Method for Predicting Cervical Lymph Node Metastasis in Papillary thyroid Cancer. Adv Intell Syst. 2022. Yao Jincao LZ, Yue Wenwen F, Bojian L, Wei O, Di F, Na L, Yidan X, Jing C, Wencong Y, Chen W, Lijing W, Liping L, Junping W, Peiying. Xu Hui-Xiong, Xu Dong. DeepThy-Net: a Multimodal Deep Learning Method for Predicting Cervical Lymph Node Metastasis in Papillary thyroid Cancer. Adv Intell Syst. 2022.
22.
go back to reference Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: Beyond Empirical Risk Minimization. Learning. 2017. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: Beyond Empirical Risk Minimization. Learning. 2017.
23.
go back to reference DeVries T, Taylor GW. Improved Regularization of Convolutional Neural Networks with Cutout. Computer Vision and Pattern Recognition. 2017. DeVries T, Taylor GW. Improved Regularization of Convolutional Neural Networks with Cutout. Computer Vision and Pattern Recognition. 2017.
24.
go back to reference Wu Y. Joint comparison of the predictive values of multiple binary diagnostic tests: an extension of McNemar’s test. J Biopharm Stat. 2022. Wu Y. Joint comparison of the predictive values of multiple binary diagnostic tests: an extension of McNemar’s test. J Biopharm Stat. 2022.
25.
go back to reference Leisenring W, Alonzo T, Pepe MS. Comparisons of predictive values of binary medical diagnostic tests for paired designs. Biometrics. 2000;56(2):345–51.CrossRefPubMed Leisenring W, Alonzo T, Pepe MS. Comparisons of predictive values of binary medical diagnostic tests for paired designs. Biometrics. 2000;56(2):345–51.CrossRefPubMed
26.
go back to reference Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.CrossRefPubMed Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.CrossRefPubMed
27.
go back to reference Rago T, Vitti P. Risk stratification of thyroid nodules: from Ultrasound features to TIRADS. Cancers (Basel). 2022;14(3). Rago T, Vitti P. Risk stratification of thyroid nodules: from Ultrasound features to TIRADS. Cancers (Basel). 2022;14(3).
28.
go back to reference Kim BM, Kim MJ, Kim E-K, Kwak JY, Hong SW, Son EJ, et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med. 2008;27(10):1425–30.CrossRefPubMed Kim BM, Kim MJ, Kim E-K, Kwak JY, Hong SW, Son EJ, et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med. 2008;27(10):1425–30.CrossRefPubMed
29.
go back to reference Park M, Shin JH, Han B-K, Ko EY, Hwang HS, Kang SS, et al. Sonography of thyroid nodules with peripheral calcifications. J Clin Ultrasound. 2009;37(6):324–8.CrossRefPubMed Park M, Shin JH, Han B-K, Ko EY, Hwang HS, Kang SS, et al. Sonography of thyroid nodules with peripheral calcifications. J Clin Ultrasound. 2009;37(6):324–8.CrossRefPubMed
30.
go back to reference Malhi HS, Velez E, Kazmierski B, Gulati M, Deurdulian C, Cen SY, et al. Peripheral thyroid nodule calcifications on Sonography: evaluation of malignant potential. AJR Am J Roentgenol. 2019;213(3):672–5.CrossRefPubMed Malhi HS, Velez E, Kazmierski B, Gulati M, Deurdulian C, Cen SY, et al. Peripheral thyroid nodule calcifications on Sonography: evaluation of malignant potential. AJR Am J Roentgenol. 2019;213(3):672–5.CrossRefPubMed
31.
go back to reference Hoang JK, Middleton WD, Farjat AE, Teefey SA, Abinanti N, Boschini FJ, et al. Interobserver variability of Sonographic features used in the American College of Radiology thyroid imaging reporting and Data System. AJR Am J Roentgenol. 2018;211(1):162–7.CrossRefPubMed Hoang JK, Middleton WD, Farjat AE, Teefey SA, Abinanti N, Boschini FJ, et al. Interobserver variability of Sonographic features used in the American College of Radiology thyroid imaging reporting and Data System. AJR Am J Roentgenol. 2018;211(1):162–7.CrossRefPubMed
32.
go back to reference Malhi H, Beland MD, Cen SY, Allgood E, Daley K, Martin SE, et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol. 2014;203(6):1310–6.CrossRefPubMed Malhi H, Beland MD, Cen SY, Allgood E, Daley K, Martin SE, et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol. 2014;203(6):1310–6.CrossRefPubMed
33.
go back to reference Zayadeen AR, Abu-Yousef M, Berbaum K. JOURNAL CLUB: retrospective evaluation of Ultrasound features of thyroid nodules to assess malignancy risk: a step toward TIRADS. AJR Am J Roentgenol. 2016;207(3):460–9.CrossRefPubMed Zayadeen AR, Abu-Yousef M, Berbaum K. JOURNAL CLUB: retrospective evaluation of Ultrasound features of thyroid nodules to assess malignancy risk: a step toward TIRADS. AJR Am J Roentgenol. 2016;207(3):460–9.CrossRefPubMed
34.
go back to reference Frates MC, Benson CB, Doubilet PM, Kunreuther E, Contreras M, Cibas ES, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006;91(9):3411–7.CrossRefPubMed Frates MC, Benson CB, Doubilet PM, Kunreuther E, Contreras M, Cibas ES, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006;91(9):3411–7.CrossRefPubMed
35.
go back to reference Seo H, Na DG, Kim J-H, Kim KW, Yoon JW. Ultrasound-based risk stratification for malignancy in thyroid nodules: a four-tier categorization system. Eur Radiol. 2015;25(7):2153–62.CrossRefPubMed Seo H, Na DG, Kim J-H, Kim KW, Yoon JW. Ultrasound-based risk stratification for malignancy in thyroid nodules: a four-tier categorization system. Eur Radiol. 2015;25(7):2153–62.CrossRefPubMed
36.
go back to reference Moon W-J, Jung SL, Lee JH, Na DG, Baek J-H, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation–multicenter retrospective study. Radiology. 2008;247(3):762–70.CrossRefPubMed Moon W-J, Jung SL, Lee JH, Na DG, Baek J-H, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation–multicenter retrospective study. Radiology. 2008;247(3):762–70.CrossRefPubMed
37.
go back to reference Ha SM, Chung YJ, Ahn HS, Baek JH, Park SB. Echogenic foci in thyroid nodules: diagnostic performance with combination of TIRADS and echogenic foci. BMC Med Imaging. 2019;19(1):28.CrossRefPubMedPubMedCentral Ha SM, Chung YJ, Ahn HS, Baek JH, Park SB. Echogenic foci in thyroid nodules: diagnostic performance with combination of TIRADS and echogenic foci. BMC Med Imaging. 2019;19(1):28.CrossRefPubMedPubMedCentral
38.
go back to reference Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–54.CrossRefPubMed Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–54.CrossRefPubMed
39.
go back to reference Buda M, Wildman-Tobriner B, Hoang JK, Thayer D, Tessler FN, Middleton WD, et al. Management of thyroid nodules seen on US images: Deep Learning May Match Performance of Radiologists. Radiology. 2019;292(3):695–701.CrossRefPubMed Buda M, Wildman-Tobriner B, Hoang JK, Thayer D, Tessler FN, Middleton WD, et al. Management of thyroid nodules seen on US images: Deep Learning May Match Performance of Radiologists. Radiology. 2019;292(3):695–701.CrossRefPubMed
40.
go back to reference Xu Y, Qian X, Zhang X, Lai X, Liu Y, Wang J. DeepLION: Deep Multi-Instance Learning improves the prediction of Cancer-Associated T Cell receptors for Accurate Cancer Detection. Front Genet. 2022;13:860510.CrossRefPubMedPubMedCentral Xu Y, Qian X, Zhang X, Lai X, Liu Y, Wang J. DeepLION: Deep Multi-Instance Learning improves the prediction of Cancer-Associated T Cell receptors for Accurate Cancer Detection. Front Genet. 2022;13:860510.CrossRefPubMedPubMedCentral
41.
go back to reference Beshnova D, Ye J, Onabolu O, Moon B, Zheng W, Fu Y-X, Brugarolas J, Lea J, Li B. De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection. Sci Transl Med 2020, 12(557). Beshnova D, Ye J, Onabolu O, Moon B, Zheng W, Fu Y-X, Brugarolas J, Lea J, Li B. De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection. Sci Transl Med 2020, 12(557).
42.
go back to reference Ostmeyer J, Christley S, Toby IT, Cowell LG. Biophysicochemical Motifs in T-cell receptor sequences distinguish repertoires from Tumor-Infiltrating lymphocyte and adjacent healthy tissue. Cancer Res. 2019;79(7):1671–80.CrossRefPubMedPubMedCentral Ostmeyer J, Christley S, Toby IT, Cowell LG. Biophysicochemical Motifs in T-cell receptor sequences distinguish repertoires from Tumor-Infiltrating lymphocyte and adjacent healthy tissue. Cancer Res. 2019;79(7):1671–80.CrossRefPubMedPubMedCentral
Metadata
Title
Deep learning approaches for differentiating thyroid nodules with calcification: a two-center study
Authors
Chen Chen
Yuanzhen Liu
Jincao Yao
Kai Wang
Maoliang Zhang
Fang Shi
Yuan Tian
Lu Gao
Yajun Ying
Qianmeng Pan
Hui Wang
Jinxin Wu
Xiaoqing Qi
Yifan Wang
Dong Xu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11456-3

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine