Skip to main content
Top
Published in: Neurotherapeutics 1/2013

01-01-2013 | Original Article

Deep Brain Stimulation of the Subthalamic Nucleus, but not Dopaminergic Medication, Improves Proactive Inhibitory Control of Movement Initiation in Parkinson's Disease

Authors: Emilie Favre, Bénédicte Ballanger, Stéphane Thobois, Emmanuel Broussolle, Philippe Boulinguez

Published in: Neurotherapeutics | Issue 1/2013

Login to get access

Abstract

Slowness in movement initiation is a cardinal feature of Parkinson’s disease (PD) that is still poorly understood and unsuccessfully alleviated by standard therapies. Here, we raise this major clinical issue within the framework of a novel theoretical model that allows a better understanding of the basic mechanisms involved in movement initiation. This model assumes that movement triggering is inhibited by default to prevent automatic responses to unpredictable events. We investigated to which extent the top-down control necessary to release this locking state before initiating actions is impaired in PD and restored by standard therapies. We used a cue–target reaction time task to test both the ability to initiate fast responses to targets and the ability to refrain from reacting to cues. Fourteen patients with dopaminergic (DA) medication and 11 with subthalamic nucleus (STN) stimulation were tested on and off treatment, and compared with 14 healthy controls. We found evidence that patients withdrawn from treatment have trouble voluntarily releasing proactive inhibitory control; while DA medication broadly reduces movement initiation latency, it does not reinstate a normal pattern of movement initiation; and stimulation of the STN specifically re-establishes the efficiency of the top-down control of proactive inhibition. These results suggest that movement initiation disorders that resist DA medication are due to executive, not motor, dysfunctions. This conclusion is discussed with regard to the role the STN may play as an interface between non-DA executive and DA motor systems in cortico-basal ganglia loops.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hallett M. Clinical neurophysiology of akinesia. Rev Neurol (Paris) 1990;146:585-590. Hallett M. Clinical neurophysiology of akinesia. Rev Neurol (Paris) 1990;146:585-590.
2.
go back to reference Gauntlett-Gilbert J, Brown VJ. Reaction time deficits and Parkinson's disease. Neurosci Biobehav Rev 1998;22:865-881.PubMedCrossRef Gauntlett-Gilbert J, Brown VJ. Reaction time deficits and Parkinson's disease. Neurosci Biobehav Rev 1998;22:865-881.PubMedCrossRef
3.
go back to reference Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bézard E, et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8:1128-839.PubMedCrossRef Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bézard E, et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8:1128-839.PubMedCrossRef
4.
go back to reference Jahanshahi M, Brown RG, Marsden CD. The effect of withdrawal of dopaminergic medication on simple and choice reaction time and the use of advance information in Parkinson's disease. J Neurol Neurosurg Psychiatr 1992;55:1168-1176.PubMedCrossRef Jahanshahi M, Brown RG, Marsden CD. The effect of withdrawal of dopaminergic medication on simple and choice reaction time and the use of advance information in Parkinson's disease. J Neurol Neurosurg Psychiatr 1992;55:1168-1176.PubMedCrossRef
5.
go back to reference Pullman SL, Watts RL, Juncos JL, Chase TN, Sanes JN. Dopaminergic effects on simple and choice reaction time performance in Parkinson's disease. Neurology 1988;38:249-254.PubMedCrossRef Pullman SL, Watts RL, Juncos JL, Chase TN, Sanes JN. Dopaminergic effects on simple and choice reaction time performance in Parkinson's disease. Neurology 1988;38:249-254.PubMedCrossRef
6.
go back to reference Schubert T, Volkmann J, Müller U, Sturm V, Voges J, Freund H-J, et al. Effects of pallidal deep brain stimulation and levodopa treatment on reaction-time performance in Parkinson's disease. Exp Brain Res 2002;144:8-16.PubMedCrossRef Schubert T, Volkmann J, Müller U, Sturm V, Voges J, Freund H-J, et al. Effects of pallidal deep brain stimulation and levodopa treatment on reaction-time performance in Parkinson's disease. Exp Brain Res 2002;144:8-16.PubMedCrossRef
7.
go back to reference Limousin P, Martinez-Torres I. Deep brain stimulation for Parkinson's disease. Neurotherapeutics 2008;5:309-319.PubMedCrossRef Limousin P, Martinez-Torres I. Deep brain stimulation for Parkinson's disease. Neurotherapeutics 2008;5:309-319.PubMedCrossRef
8.
go back to reference Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 2007;318:1309-1312.PubMedCrossRef Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 2007;318:1309-1312.PubMedCrossRef
9.
go back to reference Antonelli F, Ray N, Strafella AP. Impulsivity and Parkinson's disease: More than just disinhibition. J Neurol Sci;310:202-207. Antonelli F, Ray N, Strafella AP. Impulsivity and Parkinson's disease: More than just disinhibition. J Neurol Sci;310:202-207.
10.
go back to reference Cilia R, Eimeren T. Impulse control disorders in Parkinson’s disease: seeking a roadmap toward a better understanding. Brain Struct Funct 2011;216:289-299.PubMedCrossRef Cilia R, Eimeren T. Impulse control disorders in Parkinson’s disease: seeking a roadmap toward a better understanding. Brain Struct Funct 2011;216:289-299.PubMedCrossRef
11.
go back to reference Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266-271.PubMedCrossRef Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266-271.PubMedCrossRef
12.
go back to reference Delong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-285.PubMedCrossRef Delong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-285.PubMedCrossRef
13.
go back to reference Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, et al. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 2001;124:558-570.PubMedCrossRef Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, et al. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 2001;124:558-570.PubMedCrossRef
14.
go back to reference Escola L, Michelet T, Macia F, Guehl D, Bioulac B, Burbaud P. Disruption of information processing in the supplementary motor area of the MPTP-treated monkey: a clue to the pathophysiology of akinesia? Brain 2003;126:95-114.PubMedCrossRef Escola L, Michelet T, Macia F, Guehl D, Bioulac B, Burbaud P. Disruption of information processing in the supplementary motor area of the MPTP-treated monkey: a clue to the pathophysiology of akinesia? Brain 2003;126:95-114.PubMedCrossRef
15.
go back to reference Canavan AG, Nixon PD, Passingham RE. Motor learning in monkeys (Macaca fascicularis) with lesions in motor thalamus. Exp Brain Res 1989;77:113-126.PubMedCrossRef Canavan AG, Nixon PD, Passingham RE. Motor learning in monkeys (Macaca fascicularis) with lesions in motor thalamus. Exp Brain Res 1989;77:113-126.PubMedCrossRef
16.
go back to reference Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 1994;117:877-897.PubMedCrossRef Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 1994;117:877-897.PubMedCrossRef
17.
go back to reference Ballanger B, Gil R, Audiffren M, Desmurget M. Perceptual factors contribute to akinesia in Parkinson's disease. Exp Brain Res 2007;179:245-253.PubMedCrossRef Ballanger B, Gil R, Audiffren M, Desmurget M. Perceptual factors contribute to akinesia in Parkinson's disease. Exp Brain Res 2007;179:245-253.PubMedCrossRef
18.
go back to reference Koprich JB, Johnston TH, Huot P, Fox SH, Brotchie JM. New insights into the organization of the basal ganglia. Curr Neurol Neurosci Rep 2009;9:298-304.PubMedCrossRef Koprich JB, Johnston TH, Huot P, Fox SH, Brotchie JM. New insights into the organization of the basal ganglia. Curr Neurol Neurosci Rep 2009;9:298-304.PubMedCrossRef
19.
go back to reference Parent A, Levesque M, Parent M. A re-evaluation of the current model of the basal ganglia. Parkinsonism Relat Disord 2001;7:193-198.PubMedCrossRef Parent A, Levesque M, Parent M. A re-evaluation of the current model of the basal ganglia. Parkinsonism Relat Disord 2001;7:193-198.PubMedCrossRef
20.
go back to reference Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V. Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 2007;27:11860-11864.PubMedCrossRef Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V. Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 2007;27:11860-11864.PubMedCrossRef
21.
go back to reference Antonelli F, Ray N, Strafella AP. Imaging cognitive and behavioral symptoms in Parkinson's disease. Exp Rev Neurother 2010;10:1827-1838.CrossRef Antonelli F, Ray N, Strafella AP. Imaging cognitive and behavioral symptoms in Parkinson's disease. Exp Rev Neurother 2010;10:1827-1838.CrossRef
22.
go back to reference Obeso I, Wilkinson L, Casabona E, Bringas ML, Álvarez M, Álvarez L, et al. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease. Exp Brain Res 2011;212:371-384.PubMedCrossRef Obeso I, Wilkinson L, Casabona E, Bringas ML, Álvarez M, Álvarez L, et al. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease. Exp Brain Res 2011;212:371-384.PubMedCrossRef
23.
go back to reference Wylie SA, Ridderinkhof KR, Elias WJ, Frysinger RC, Bashore TR, Downs KE, et al. Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson's disease. Brain 2010;133:3611-3624.PubMedCrossRef Wylie SA, Ridderinkhof KR, Elias WJ, Frysinger RC, Bashore TR, Downs KE, et al. Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson's disease. Brain 2010;133:3611-3624.PubMedCrossRef
24.
go back to reference Bokura H, Yamaguchi S, Kobayashi S. Event-related potentials for response inhibition in Parkinson's disease. Neuropsychologia 2005;43:967-975.PubMedCrossRef Bokura H, Yamaguchi S, Kobayashi S. Event-related potentials for response inhibition in Parkinson's disease. Neuropsychologia 2005;43:967-975.PubMedCrossRef
25.
go back to reference Gauggel S, Rieger M, Feghoff T-A. Inhibition of ongoing responses in patients with Parkinson's disease. J Neurol Neurosurg Psychiatr 2004;75:539-544.PubMed Gauggel S, Rieger M, Feghoff T-A. Inhibition of ongoing responses in patients with Parkinson's disease. J Neurol Neurosurg Psychiatr 2004;75:539-544.PubMed
26.
go back to reference Falkenstein M, Willemssen R, Hohnsbein J, Hielscher H. Effects of stimulus-response compatibility in Parkinson's disease: a psychophysiological analysis. J Neural Transm 2006;113:1449-1462.PubMedCrossRef Falkenstein M, Willemssen R, Hohnsbein J, Hielscher H. Effects of stimulus-response compatibility in Parkinson's disease: a psychophysiological analysis. J Neural Transm 2006;113:1449-1462.PubMedCrossRef
27.
go back to reference Ballanger B. Top-down control of saccades as part of a generalized model of proactive inhibitory control. J Neurophysiol 2009;102:2578-2580.PubMedCrossRef Ballanger B. Top-down control of saccades as part of a generalized model of proactive inhibitory control. J Neurophysiol 2009;102:2578-2580.PubMedCrossRef
28.
go back to reference Boulinguez P, Jaffard M, Granjon L, Benraiss A. Warning signals induce automatic EMG activations and proactive volitional inhibition: evidence from analysis of error distribution in simple RT. J Neurophysiol 2008;99:1572-1578.PubMedCrossRef Boulinguez P, Jaffard M, Granjon L, Benraiss A. Warning signals induce automatic EMG activations and proactive volitional inhibition: evidence from analysis of error distribution in simple RT. J Neurophysiol 2008;99:1572-1578.PubMedCrossRef
29.
go back to reference Boulinguez P, Ballanger B, Granjon L, Benraiss A. The paradoxical effect of warning on reaction time: demonstrating proactive response inhibition with event-related potentials. Clin Neurophysiol 2009;120:730-737.PubMedCrossRef Boulinguez P, Ballanger B, Granjon L, Benraiss A. The paradoxical effect of warning on reaction time: demonstrating proactive response inhibition with event-related potentials. Clin Neurophysiol 2009;120:730-737.PubMedCrossRef
30.
go back to reference Jaffard M, Benraiss A, Longcamp M, Velay J-L, Boulinguez P. Cueing method biases in visual detection studies. Brain Res 2007;1179:106-118.PubMedCrossRef Jaffard M, Benraiss A, Longcamp M, Velay J-L, Boulinguez P. Cueing method biases in visual detection studies. Brain Res 2007;1179:106-118.PubMedCrossRef
31.
go back to reference Jaffard M, Longcamp M, Velay J-L, Anton J-L, Roth M, Nazarian B, et al. Proactive inhibitory control of movement assessed by event-related fMRI. Neuroimage 2008;42:1196-1206.PubMedCrossRef Jaffard M, Longcamp M, Velay J-L, Anton J-L, Roth M, Nazarian B, et al. Proactive inhibitory control of movement assessed by event-related fMRI. Neuroimage 2008;42:1196-1206.PubMedCrossRef
32.
go back to reference Criaud M, Wardak C, Ben Hamed S, Ballanger B, Boulinguez P. Proactive inhibitory control of response as the default state of executive control. Front Psychol 2012;3:59.PubMedCrossRef Criaud M, Wardak C, Ben Hamed S, Ballanger B, Boulinguez P. Proactive inhibitory control of response as the default state of executive control. Front Psychol 2012;3:59.PubMedCrossRef
33.
go back to reference Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 2010;14:154-161.PubMedCrossRef Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 2010;14:154-161.PubMedCrossRef
34.
go back to reference Ballanger B, van Eimeren T, Moro E, Lozano AM, Hamani C, Boulinguez P, et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 2009;66:817-824.PubMedCrossRef Ballanger B, van Eimeren T, Moro E, Lozano AM, Hamani C, Boulinguez P, et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 2009;66:817-824.PubMedCrossRef
35.
go back to reference Koerts J, Leenders KL, Brouwer WH. Cognitive dysfunction in non-demented Parkinson's disease patients: Controlled and automatic behavior. Cortex 2009;45:922-929.PubMedCrossRef Koerts J, Leenders KL, Brouwer WH. Cognitive dysfunction in non-demented Parkinson's disease patients: Controlled and automatic behavior. Cortex 2009;45:922-929.PubMedCrossRef
36.
go back to reference van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson's disease? Neuropsychopharmacology 2009;34:2758-2766.PubMedCrossRef van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson's disease? Neuropsychopharmacology 2009;34:2758-2766.PubMedCrossRef
37.
go back to reference Voon V, Dalley JW. Parkinson disease: impulsive choice-Parkinson disease and dopaminergic therapy. Nat Rev Neurol 2011:7:541-542.PubMedCrossRef Voon V, Dalley JW. Parkinson disease: impulsive choice-Parkinson disease and dopaminergic therapy. Nat Rev Neurol 2011:7:541-542.PubMedCrossRef
38.
go back to reference Leh SE, Petrides M, Strafella AP. The Neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology 2009;35:70-85.CrossRef Leh SE, Petrides M, Strafella AP. The Neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology 2009;35:70-85.CrossRef
39.
go back to reference Obeso I, Wilkinson L. Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson's disease. Exp Brain Res 2011;213:435-445.PubMedCrossRef Obeso I, Wilkinson L. Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson's disease. Exp Brain Res 2011;213:435-445.PubMedCrossRef
40.
go back to reference Eagle DM, Baunez C. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 2010;34:50-72.PubMedCrossRef Eagle DM, Baunez C. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 2010;34:50-72.PubMedCrossRef
41.
go back to reference Eagle DM, Wong JCK, Allan ME, Mar AC, Theobald DE, Robbins TW. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci 2011;31:7349-7356.PubMedCrossRef Eagle DM, Wong JCK, Allan ME, Mar AC, Theobald DE, Robbins TW. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci 2011;31:7349-7356.PubMedCrossRef
42.
go back to reference Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology 2002;59:706-713.PubMedCrossRef Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology 2002;59:706-713.PubMedCrossRef
43.
go back to reference Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 2003;349:1925-1934.PubMedCrossRef Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 2003;349:1925-1934.PubMedCrossRef
44.
go back to reference Jahanshahi M, Ardouin CM, Brown RG, Rothwell JC, Obeso J, Albanese A, et al. The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 2000;123:1142-1154.PubMedCrossRef Jahanshahi M, Ardouin CM, Brown RG, Rothwell JC, Obeso J, Albanese A, et al. The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 2000;123:1142-1154.PubMedCrossRef
45.
go back to reference Schroeder U, Kuehler A, Haslinger B, Erhard P, Fogel W, Tronnier VM, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 2002;125:1995-2004.PubMedCrossRef Schroeder U, Kuehler A, Haslinger B, Erhard P, Fogel W, Tronnier VM, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 2002;125:1995-2004.PubMedCrossRef
46.
go back to reference Thobois S, Hotton GR, Pinto S, Wilkinson L, Limousin-Dowsey P, Brooks DJ, et al. STN stimulation alters pallidal-frontal coupling during response selection under competition. J Cereb Blood Flow Metab 2007;27:1173-1184.PubMedCrossRef Thobois S, Hotton GR, Pinto S, Wilkinson L, Limousin-Dowsey P, Brooks DJ, et al. STN stimulation alters pallidal-frontal coupling during response selection under competition. J Cereb Blood Flow Metab 2007;27:1173-1184.PubMedCrossRef
47.
go back to reference Johnson MD, Miocinovic S, McIntyre CC, Vitek JL. Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 2008;5:294-308.PubMedCrossRef Johnson MD, Miocinovic S, McIntyre CC, Vitek JL. Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 2008;5:294-308.PubMedCrossRef
48.
go back to reference Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 2002;43:111-117.PubMedCrossRef Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 2002;43:111-117.PubMedCrossRef
49.
go back to reference Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov Disord 2010;25:2649-2653.PubMedCrossRef Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov Disord 2010;25:2649-2653.PubMedCrossRef
50.
go back to reference Grande LJ, Crosson B, Heilman KM, Bauer RM, Kilduff P, McGlinchey RE. Visual selective attention in Parkinson's disease: dissociation of exogenous and endogenous inhibition. Neuropsychology 2006;20:370-382.PubMedCrossRef Grande LJ, Crosson B, Heilman KM, Bauer RM, Kilduff P, McGlinchey RE. Visual selective attention in Parkinson's disease: dissociation of exogenous and endogenous inhibition. Neuropsychology 2006;20:370-382.PubMedCrossRef
51.
go back to reference Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 1995;118:913-933.PubMedCrossRef Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 1995;118:913-933.PubMedCrossRef
52.
go back to reference Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-744.PubMedCrossRef Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-744.PubMedCrossRef
53.
go back to reference Jubault T, Monetta L, Strafella AP, Lafontaine A-L, Monchi O. L-dopa medication in Parkinson's disease restores activity in the motor cortico-striatal loop but does not modify the cognitive network. PLoS ONE 2009;4:e6154.PubMedCrossRef Jubault T, Monetta L, Strafella AP, Lafontaine A-L, Monchi O. L-dopa medication in Parkinson's disease restores activity in the motor cortico-striatal loop but does not modify the cognitive network. PLoS ONE 2009;4:e6154.PubMedCrossRef
54.
go back to reference Fimm B, Heber IA, Coenen VA, Fromm C, Noth J, Kronenbuerger M. Deep brain stimulation of the subthalamic nucleus improves intrinsic alertness in Parkinson's disease. Mov Disord. 2009;24:1613-1620.PubMedCrossRef Fimm B, Heber IA, Coenen VA, Fromm C, Noth J, Kronenbuerger M. Deep brain stimulation of the subthalamic nucleus improves intrinsic alertness in Parkinson's disease. Mov Disord. 2009;24:1613-1620.PubMedCrossRef
55.
go back to reference Jahfari S, Waldorp L, van den Wildenberg WPM, Scholte HS, Ridderinkhof KR, Forstmann BU. Effective Connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci 2011;31:6891-6899.PubMedCrossRef Jahfari S, Waldorp L, van den Wildenberg WPM, Scholte HS, Ridderinkhof KR, Forstmann BU. Effective Connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci 2011;31:6891-6899.PubMedCrossRef
56.
go back to reference Zandbelt BB, Bloemendaal M, Neggers SFW, Kahn RS, Vink M. Expectations and violations: Delineating the neural network of proactive inhibitory control. Hum Brain Mapp 2012 Feb 22 [Epub ahead of print]. Zandbelt BB, Bloemendaal M, Neggers SFW, Kahn RS, Vink M. Expectations and violations: Delineating the neural network of proactive inhibitory control. Hum Brain Mapp 2012 Feb 22 [Epub ahead of print].
57.
go back to reference Marchand WR, Lee JN, Suchy Y, Garn C, Chelune G, Johnson S, et al. Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Hum Brain Mapp 2012 Jan 30 [Epub ahead of print]. Marchand WR, Lee JN, Suchy Y, Garn C, Chelune G, Johnson S, et al. Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Hum Brain Mapp 2012 Jan 30 [Epub ahead of print].
58.
go back to reference Forstmann BU, Anwander A, Schäfer A, Neumann J, Brown S, Wagenmakers E-J, et al. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc Natl Acad Sci USA 2010;107:15916-15920.PubMedCrossRef Forstmann BU, Anwander A, Schäfer A, Neumann J, Brown S, Wagenmakers E-J, et al. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc Natl Acad Sci USA 2010;107:15916-15920.PubMedCrossRef
59.
go back to reference Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci 2011;14:1462-1467.PubMedCrossRef Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci 2011;14:1462-1467.PubMedCrossRef
60.
go back to reference Duann J-R, Ide JS, Luo X, Li C-SR. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci 2009;29:10171-10179.PubMedCrossRef Duann J-R, Ide JS, Luo X, Li C-SR. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci 2009;29:10171-10179.PubMedCrossRef
61.
go back to reference Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 2007;10:240-248.PubMedCrossRef Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 2007;10:240-248.PubMedCrossRef
62.
go back to reference Aron AR. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. BPS 2011;69:e55-e68. Aron AR. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. BPS 2011;69:e55-e68.
63.
go back to reference Filevich E, Kühn S, Haggard P. Intentional inhibition in human action: the power of 'no'. Neurosci Biobehav Rev 2012;36:1107-1118.PubMedCrossRef Filevich E, Kühn S, Haggard P. Intentional inhibition in human action: the power of 'no'. Neurosci Biobehav Rev 2012;36:1107-1118.PubMedCrossRef
64.
go back to reference Kühn S, Haggard P, Brass M. Intentional inhibition: how the “veto-area” exerts control. Hum Brain Mapp 2009;30:2834-2843.PubMedCrossRef Kühn S, Haggard P, Brass M. Intentional inhibition: how the “veto-area” exerts control. Hum Brain Mapp 2009;30:2834-2843.PubMedCrossRef
65.
go back to reference Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, et al. Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage; 2010;60:1-12. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, et al. Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage; 2010;60:1-12.
66.
go back to reference Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain 2011;134:359-374.PubMedCrossRef Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain 2011;134:359-374.PubMedCrossRef
67.
go back to reference Temel Y. Subthalamic nucleus stimulation in Parkinson's disease: the other side of the medallion. Exp Neurol 2008;211:321-323.PubMedCrossRef Temel Y. Subthalamic nucleus stimulation in Parkinson's disease: the other side of the medallion. Exp Neurol 2008;211:321-323.PubMedCrossRef
68.
go back to reference Benarroch EE. Subthalamic nucleus and its connections: Anatomic substrate for the network effects of deep brain stimulation. Neurology 2008;70:1991-1995.PubMedCrossRef Benarroch EE. Subthalamic nucleus and its connections: Anatomic substrate for the network effects of deep brain stimulation. Neurology 2008;70:1991-1995.PubMedCrossRef
69.
go back to reference Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 1992;32:151-161.PubMedCrossRef Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 1992;32:151-161.PubMedCrossRef
70.
go back to reference Payoux P, Remy P, Damier P, Miloudi M, Loubinoux I, Pidoux B, et al. Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 2004;61:1307-1313.PubMedCrossRef Payoux P, Remy P, Damier P, Miloudi M, Loubinoux I, Pidoux B, et al. Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 2004;61:1307-1313.PubMedCrossRef
71.
go back to reference Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P. Effective connectivity of brain networks during self-initiated movement in Parkinson's disease. Neuroimage 2011;55:204-215.PubMedCrossRef Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P. Effective connectivity of brain networks during self-initiated movement in Parkinson's disease. Neuroimage 2011;55:204-215.PubMedCrossRef
72.
go back to reference Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson's disease. Hum Brain Mapp 2011;32:1443-1457.PubMedCrossRef Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson's disease. Hum Brain Mapp 2011;32:1443-1457.PubMedCrossRef
73.
go back to reference van Eimeren T, Monchi O, Ballanger B, Strafella AP. Dysfunction of the default mode network in Parkinson Disease: a functional magnetic resonance imaging study. Arch Neurol 2009;66:877-883.PubMedCrossRef van Eimeren T, Monchi O, Ballanger B, Strafella AP. Dysfunction of the default mode network in Parkinson Disease: a functional magnetic resonance imaging study. Arch Neurol 2009;66:877-883.PubMedCrossRef
74.
go back to reference Thiel CM, Fink GR. Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. J Neurophysiol 2007;97:2758-2768.PubMedCrossRef Thiel CM, Fink GR. Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. J Neurophysiol 2007;97:2758-2768.PubMedCrossRef
75.
go back to reference Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res 2011;221:430-442.PubMedCrossRef Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res 2011;221:430-442.PubMedCrossRef
76.
go back to reference Hahn B, Ross TJ, Yang Y, Kim I, Huestis MA, Stein EA. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J Neurosci 2007;27:3477-3489.PubMedCrossRef Hahn B, Ross TJ, Yang Y, Kim I, Huestis MA, Stein EA. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J Neurosci 2007;27:3477-3489.PubMedCrossRef
77.
go back to reference Coull JT, Frith CD, Dolan RJ, Frackowiak RS, Grasby PM. The neural correlates of the noradrenergic modulation of human attention, arousal and learning. Eur J Neurosci 1997;9:589-598.PubMedCrossRef Coull JT, Frith CD, Dolan RJ, Frackowiak RS, Grasby PM. The neural correlates of the noradrenergic modulation of human attention, arousal and learning. Eur J Neurosci 1997;9:589-598.PubMedCrossRef
78.
go back to reference Coull JT, Büchel C, Friston KJ, Frith CD. Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage 1999;10:705-715.PubMedCrossRef Coull JT, Büchel C, Friston KJ, Frith CD. Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage 1999;10:705-715.PubMedCrossRef
79.
go back to reference Coull JT, Nobre AC, Frith CD. The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 2001;11:73-84.PubMedCrossRef Coull JT, Nobre AC, Frith CD. The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 2001;11:73-84.PubMedCrossRef
80.
go back to reference Witte EA, Marrocco RT. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 1997;132:315-323.PubMedCrossRef Witte EA, Marrocco RT. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 1997;132:315-323.PubMedCrossRef
81.
82.
go back to reference Robbins TW. Chemistry of the mind: Neurochemical modulation of prefrontal cortical function. J Comp Neurol 2005;493:140-146.PubMedCrossRef Robbins TW. Chemistry of the mind: Neurochemical modulation of prefrontal cortical function. J Comp Neurol 2005;493:140-146.PubMedCrossRef
83.
go back to reference Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G. The role of locus coeruleus in the regulation of cognitive performance. Science 1999;283:549-554.PubMedCrossRef Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G. The role of locus coeruleus in the regulation of cognitive performance. Science 1999;283:549-554.PubMedCrossRef
84.
go back to reference Bouret S, Sara SJ. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci 2005;28:574-582.PubMedCrossRef Bouret S, Sara SJ. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci 2005;28:574-582.PubMedCrossRef
85.
go back to reference Carli M, Robbins TW, Evenden JL, Everitt BJ. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 1983;9:361-380.PubMedCrossRef Carli M, Robbins TW, Evenden JL, Everitt BJ. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 1983;9:361-380.PubMedCrossRef
86.
go back to reference Minzenberg MJ, Yoon JH, Carter CS. Modafinil modulation of the default mode network. Psychopharmacology 2011;215:23-31.PubMedCrossRef Minzenberg MJ, Yoon JH, Carter CS. Modafinil modulation of the default mode network. Psychopharmacology 2011;215:23-31.PubMedCrossRef
87.
go back to reference Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011;221:564-573.PubMedCrossRef Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011;221:564-573.PubMedCrossRef
88.
go back to reference Bezard E, Brefel C, Tison F, Peyro-Saint-Paul H, Ladure P, Rascol O, et al. Effect of the alpha 2 adrenoreceptor antagonist, idazoxan, on motor disabilities in MPTP-treated monkey. Prog Neuropsychopharmacol Biol Psychiatry 1999;23:1237-1246.PubMedCrossRef Bezard E, Brefel C, Tison F, Peyro-Saint-Paul H, Ladure P, Rascol O, et al. Effect of the alpha 2 adrenoreceptor antagonist, idazoxan, on motor disabilities in MPTP-treated monkey. Prog Neuropsychopharmacol Biol Psychiatry 1999;23:1237-1246.PubMedCrossRef
89.
go back to reference Delaville C, Deurwaerdère PD, Benazzouz A. Noradrenaline and Parkinson's disease. Front Syst Neurosci 2011;5:31.PubMedCrossRef Delaville C, Deurwaerdère PD, Benazzouz A. Noradrenaline and Parkinson's disease. Front Syst Neurosci 2011;5:31.PubMedCrossRef
90.
go back to reference Vazey EM, Aston-Jones G. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease. Front Behav Neurosci 2012;6:48.PubMedCrossRef Vazey EM, Aston-Jones G. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease. Front Behav Neurosci 2012;6:48.PubMedCrossRef
Metadata
Title
Deep Brain Stimulation of the Subthalamic Nucleus, but not Dopaminergic Medication, Improves Proactive Inhibitory Control of Movement Initiation in Parkinson's Disease
Authors
Emilie Favre
Bénédicte Ballanger
Stéphane Thobois
Emmanuel Broussolle
Philippe Boulinguez
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Neurotherapeutics / Issue 1/2013
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-012-0166-1

Other articles of this Issue 1/2013

Neurotherapeutics 1/2013 Go to the issue