Skip to main content
Top
Published in: Acta Neuropathologica 1/2012

01-07-2012 | Original Paper

Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism

Authors: Sarah Jacot-Descombes, Neha Uppal, Bridget Wicinski, Micaela Santos, James Schmeidler, Panteleimon Giannakopoulos, Helmut Heinsein, Christoph Schmitz, Patrick R. Hof

Published in: Acta Neuropathologica | Issue 1/2012

Login to get access

Abstract

Autism is a neurodevelopmental disorder characterized by deficits in social interaction and social communication, as well as by the presence of repetitive and stereotyped behaviors and interests. Brodmann areas 44 and 45 in the inferior frontal cortex, which are involved in language processing, imitation function, and sociality processing networks, have been implicated in this complex disorder. Using a stereologic approach, this study aims to explore the presence of neuropathological differences in areas 44 and 45 in patients with autism compared to age- and hemisphere-matched controls. Based on previous evidence in the fusiform gyrus, we expected to find a decrease in the number and size of pyramidal neurons as well as an increase in volume of layers III, V, and VI in patients with autism. We observed significantly smaller pyramidal neurons in patients with autism compared to controls, although there was no difference in pyramidal neuron numbers or layer volumes. The reduced pyramidal neuron size suggests that a certain degree of dysfunction of areas 44 and 45 plays a role in the pathology of autism. Our results also support previous studies that have shown specific cellular neuropathology in autism with regionally specific reduction in neuron size, and provide further evidence for the possible involvement of the mirror neuron system, as well as impairment of neuronal networks relevant to communication and social behaviors, in this disorder.
Literature
1.
go back to reference American Psychiatric Association (2000) ASM-IV-TR: diagnostic and statistical manual of mental disorders text revision. American Psychiatric Association, Washington, DC American Psychiatric Association (2000) ASM-IV-TR: diagnostic and statistical manual of mental disorders text revision. American Psychiatric Association, Washington, DC
2.
go back to reference Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRef Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRef
3.
go back to reference Baillargeon R, Scott RM, He Z (2010) False-belief understanding in infants. Trends Cogn Sci 14:110–118PubMedCrossRef Baillargeon R, Scott RM, He Z (2010) False-belief understanding in infants. Trends Cogn Sci 14:110–118PubMedCrossRef
4.
go back to reference Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422PubMedCrossRef Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422PubMedCrossRef
5.
go back to reference Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a “theory of mind”? Cognition 21:37–46PubMedCrossRef Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a “theory of mind”? Cognition 21:37–46PubMedCrossRef
6.
go back to reference Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188PubMedCrossRef Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188PubMedCrossRef
7.
go back to reference Broca P (1861) Remarques sur le siège de la faculté du langage articulé; suivies d’une observation d’aphémie (perte de la parole). Bull Mem Soc Anat Paris 36:330–357 Broca P (1861) Remarques sur le siège de la faculté du langage articulé; suivies d’une observation d’aphémie (perte de la parole). Bull Mem Soc Anat Paris 36:330–357
8.
go back to reference Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth, Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth, Leipzig
9.
10.
go back to reference Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A (2010) A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20:451–458PubMedCrossRef Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A (2010) A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20:451–458PubMedCrossRef
11.
go back to reference Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16PubMedCrossRef Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16PubMedCrossRef
12.
go back to reference Coleman PD, Romano J, Lapham L, Simon W (1985) Cell counts in cerebral cortex of an autistic patient. J Autism Dev Disord 15:245–255PubMedCrossRef Coleman PD, Romano J, Lapham L, Simon W (1985) Cell counts in cerebral cortex of an autistic patient. J Autism Dev Disord 15:245–255PubMedCrossRef
13.
go back to reference Council on Child and Adolescent Health, (1988) American Academy of Pediatrics Council on Child and Adolescent Health: age limits of pediatrics. Pediatrics 81:736 Council on Child and Adolescent Health, (1988) American Academy of Pediatrics Council on Child and Adolescent Health: age limits of pediatrics. Pediatrics 81:736
14.
go back to reference Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145PubMedCrossRef Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145PubMedCrossRef
15.
go back to reference Courchesne E, Mouton PR, Calhoun ME et al (2011) Neuron number and size in prefrontal cortex of children with autism. J Am Med Assoc 306:2001–2010CrossRef Courchesne E, Mouton PR, Calhoun ME et al (2011) Neuron number and size in prefrontal cortex of children with autism. J Am Med Assoc 306:2001–2010CrossRef
16.
go back to reference Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230PubMedCrossRef Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230PubMedCrossRef
17.
go back to reference di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180PubMedCrossRef di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180PubMedCrossRef
18.
go back to reference Dinstein I, Pierce K, Eyler L et al (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225PubMedCrossRef Dinstein I, Pierce K, Eyler L et al (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225PubMedCrossRef
19.
go back to reference Fatemi SH, Earle J, Kanodia R et al (2002) Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol 22:25–33PubMedCrossRef Fatemi SH, Earle J, Kanodia R et al (2002) Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol 22:25–33PubMedCrossRef
20.
go back to reference Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667PubMedCrossRef Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667PubMedCrossRef
21.
go back to reference Ford A, McGregor KM, Case K, Crosson B, White KD (2010) Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52:1230–1237PubMedCrossRef Ford A, McGregor KM, Case K, Crosson B, White KD (2010) Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52:1230–1237PubMedCrossRef
23.
go back to reference Gallese V (2003) The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology 36:171–180PubMedCrossRef Gallese V (2003) The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology 36:171–180PubMedCrossRef
24.
go back to reference Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRef Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRef
25.
go back to reference Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 163:81–105PubMedCrossRef Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 163:81–105PubMedCrossRef
26.
go back to reference Goines P, Van de Water J (2010) The immune system’s role in the biology of autism. Curr Opin Neurol 23:111–117PubMedCrossRef Goines P, Van de Water J (2010) The immune system’s role in the biology of autism. Curr Opin Neurol 23:111–117PubMedCrossRef
27.
go back to reference Grezes J, Armony JL, Rowe J, Passingham RE (2003) Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage 18:928–937PubMedCrossRef Grezes J, Armony JL, Rowe J, Passingham RE (2003) Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage 18:928–937PubMedCrossRef
28.
go back to reference Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16:1276–1282PubMedCrossRef Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16:1276–1282PubMedCrossRef
29.
go back to reference Hamilton AF (2009) Goals, intentions and mental states: challenges for theories of autism. J Child Psychol Psychiatry 50:881–892PubMedCrossRef Hamilton AF (2009) Goals, intentions and mental states: challenges for theories of autism. J Child Psychol Psychiatry 50:881–892PubMedCrossRef
30.
go back to reference Hamilton AF, Brindley RM, Frith U (2007) Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia 45:1859–1868PubMedCrossRef Hamilton AF, Brindley RM, Frith U (2007) Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia 45:1859–1868PubMedCrossRef
31.
go back to reference Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM (2010) The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 50:1313–1319PubMedCrossRef Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM (2010) The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 50:1313–1319PubMedCrossRef
33.
go back to reference Hari R, Kujala MV (2009) Brain basis of human social interaction: from concepts to brain imaging. Physiol Rev 89:453–479PubMedCrossRef Hari R, Kujala MV (2009) Brain basis of human social interaction: from concepts to brain imaging. Physiol Rev 89:453–479PubMedCrossRef
34.
go back to reference Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233PubMedCrossRef Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233PubMedCrossRef
35.
go back to reference Hayes TL, Lewis DA (1993) Hemispheric differences in layer III pyramidal neurons of the anterior language area. Arch Neurol 50:501–505PubMedCrossRef Hayes TL, Lewis DA (1993) Hemispheric differences in layer III pyramidal neurons of the anterior language area. Arch Neurol 50:501–505PubMedCrossRef
36.
go back to reference Hazlett HC, Poe MD, Gerig G et al (2011) Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68:467–476PubMedCrossRef Hazlett HC, Poe MD, Gerig G et al (2011) Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68:467–476PubMedCrossRef
37.
go back to reference Heinsen H, Arzberger T, Schmitz C (2000) Celloidin mounting (embedding without infiltration)—a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat 20:49–59PubMedCrossRef Heinsen H, Arzberger T, Schmitz C (2000) Celloidin mounting (embedding without infiltration)—a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat 20:49–59PubMedCrossRef
38.
go back to reference Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173 Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173
39.
go back to reference Heiser M, Iacoboni M, Maeda F, Marcus J, Mazziotta JC (2003) The essential role of Broca’s area in imitation. Eur J Neurosci 17:1123–1128PubMedCrossRef Heiser M, Iacoboni M, Maeda F, Marcus J, Mazziotta JC (2003) The essential role of Broca’s area in imitation. Eur J Neurosci 17:1123–1128PubMedCrossRef
40.
go back to reference Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRef Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRef
41.
go back to reference Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680PubMedCrossRef Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680PubMedCrossRef
42.
go back to reference Johnson-Frey SH, Maloof FR, Newman-Norlund R, Farrer C, Inati S, Grafton ST (2003) Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39:1053–1058PubMedCrossRef Johnson-Frey SH, Maloof FR, Newman-Norlund R, Farrer C, Inati S, Grafton ST (2003) Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39:1053–1058PubMedCrossRef
43.
go back to reference Jones EG (1984) Laminar distribution of cortical efferent cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 521–553 Jones EG (1984) Laminar distribution of cortical efferent cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 521–553
44.
go back to reference Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821PubMedCrossRef Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821PubMedCrossRef
45.
go back to reference Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2006) Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain 129:2484–2493PubMedCrossRef Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2006) Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain 129:2484–2493PubMedCrossRef
46.
go back to reference Keller SS, Deppe M, Herbin M, Gilissen E (2012) Variability and asymmetry of the sulcal contours defining Broca’s area homologue in the chimpanzee brain. J Comp Neurol 520:1165–1180PubMedCrossRef Keller SS, Deppe M, Herbin M, Gilissen E (2012) Variability and asymmetry of the sulcal contours defining Broca’s area homologue in the chimpanzee brain. J Comp Neurol 520:1165–1180PubMedCrossRef
47.
go back to reference Kelly C, Uddin LQ, Shehzad Z et al (2010) Broca’s region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. Eur J Neurosci 32:383–398PubMedCrossRef Kelly C, Uddin LQ, Shehzad Z et al (2010) Broca’s region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. Eur J Neurosci 32:383–398PubMedCrossRef
48.
go back to reference Keuken MC, Hardie A, Dorn BT et al (2011) The role of the left inferior frontal gyrus in social perception: an rTMS study. Brain Res 1383:196–205PubMedCrossRef Keuken MC, Hardie A, Dorn BT et al (2011) The role of the left inferior frontal gyrus in social perception: an rTMS study. Brain Res 1383:196–205PubMedCrossRef
49.
go back to reference Kobayashi C, Glover GH, Temple E (2007) Children’s and adults’ neural bases of verbal and nonverbal ‘theory of mind’. Neuropsychologia 45:1522–1532PubMedCrossRef Kobayashi C, Glover GH, Temple E (2007) Children’s and adults’ neural bases of verbal and nonverbal ‘theory of mind’. Neuropsychologia 45:1522–1532PubMedCrossRef
50.
go back to reference Kosaka H, Omori M, Munesue T et al (2010) Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. Neuroimage 50:1357–1363PubMedCrossRef Kosaka H, Omori M, Munesue T et al (2010) Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. Neuroimage 50:1357–1363PubMedCrossRef
51.
go back to reference Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24:810–821PubMedCrossRef Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24:810–821PubMedCrossRef
52.
go back to reference Lai G, Pantazatos SP, Schneider H, Hirsch J (2012) Neural systems for speech and song in autism. Brain 135:961–975PubMedCrossRef Lai G, Pantazatos SP, Schneider H, Hirsch J (2012) Neural systems for speech and song in autism. Brain 135:961–975PubMedCrossRef
53.
go back to reference Liakakis G, Nickel J, Seitz RJ (2011) Diversity of the inferior frontal gyrus—a meta-analysis of neuroimaging studies. Behav Brain Res 225:341–347PubMedCrossRef Liakakis G, Nickel J, Seitz RJ (2011) Diversity of the inferior frontal gyrus—a meta-analysis of neuroimaging studies. Behav Brain Res 225:341–347PubMedCrossRef
54.
go back to reference Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 164:287–303PubMedCrossRef Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 164:287–303PubMedCrossRef
55.
go back to reference Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme Medical Publishers, New York, pp 54–58 Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme Medical Publishers, New York, pp 54–58
56.
go back to reference Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127:2572–2583PubMedCrossRef Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127:2572–2583PubMedCrossRef
57.
go back to reference Patterson PH (2011) Maternal infection and immune involvement in autism. Trends Mol Med 17:389–394PubMedCrossRef Patterson PH (2011) Maternal infection and immune involvement in autism. Trends Mol Med 17:389–394PubMedCrossRef
58.
go back to reference Premack D, Woodruff G (1978) Does the chimpanzee have a ‘theory of mind’? Behav Brain Sci 4:515–526CrossRef Premack D, Woodruff G (1978) Does the chimpanzee have a ‘theory of mind’? Behav Brain Sci 4:515–526CrossRef
59.
go back to reference Rice C (2009) Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ 58:1–20 Rice C (2009) Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ 58:1–20
60.
go back to reference Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141PubMedCrossRef Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141PubMedCrossRef
61.
go back to reference Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670PubMedCrossRef Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670PubMedCrossRef
62.
go back to reference Rogers SJ, Pennington BF (1991) A theoretical approach to the deficits in infantile autism. Dev Psychopathol 3:137–162CrossRef Rogers SJ, Pennington BF (1991) A theoretical approach to the deficits in infantile autism. Dev Psychopathol 3:137–162CrossRef
63.
go back to reference Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401 Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401
64.
go back to reference Santos M, Uppal N, Butti C et al (2011) Von economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 1380:206–217PubMedCrossRef Santos M, Uppal N, Butti C et al (2011) Von economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 1380:206–217PubMedCrossRef
65.
66.
go back to reference Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679PubMedCrossRef Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679PubMedCrossRef
68.
go back to reference Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR (2003) Variability of Broca’s area homologue in african great apes: implications for language evolution. Anat Rec 271:276–285CrossRef Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR (2003) Variability of Broca’s area homologue in african great apes: implications for language evolution. Anat Rec 271:276–285CrossRef
69.
go back to reference Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539PubMedCrossRef Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539PubMedCrossRef
70.
go back to reference Theoret H, Halligan E, Kobayashi M, Fregni F, Tager-Flusberg H, Pascual-Leone A (2005) Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr Biol 15:R84–R85PubMedCrossRef Theoret H, Halligan E, Kobayashi M, Fregni F, Tager-Flusberg H, Pascual-Leone A (2005) Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr Biol 15:R84–R85PubMedCrossRef
71.
go back to reference Turella L, Pierno AC, Tubaldi F, Castiello U (2009) Mirror neurons in humans: consisting or confounding evidence? Brain Lang 108:10–21PubMedCrossRef Turella L, Pierno AC, Tubaldi F, Castiello U (2009) Mirror neurons in humans: consisting or confounding evidence? Brain Lang 108:10–21PubMedCrossRef
72.
go back to reference Tyler LK, Marslen-Wilson WD, Randall B et al (2011) Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain 134:415–431PubMedCrossRef Tyler LK, Marslen-Wilson WD, Randall B et al (2011) Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain 134:415–431PubMedCrossRef
73.
go back to reference van Kooten IA, Palmen SJ, von Cappeln P et al (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999PubMedCrossRef van Kooten IA, Palmen SJ, von Cappeln P et al (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999PubMedCrossRef
74.
go back to reference Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Muller RA (2005) Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage 25:916–925PubMedCrossRef Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Muller RA (2005) Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage 25:916–925PubMedCrossRef
75.
go back to reference von Economo C (1927) L’architecture cellulaire normale de l’écorce cérébrale. Masson, Paris von Economo C (1927) L’architecture cellulaire normale de l’écorce cérébrale. Masson, Paris
76.
go back to reference Wegiel J, Kuchna I, Nowicki K et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770PubMedCrossRef Wegiel J, Kuchna I, Nowicki K et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770PubMedCrossRef
77.
go back to reference West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedCrossRef West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedCrossRef
78.
go back to reference Williams JH (2008) Self-other relations in social development and autism: Multiple roles for mirror neurons and other brain bases. Autism Res 1:73–90PubMedCrossRef Williams JH (2008) Self-other relations in social development and autism: Multiple roles for mirror neurons and other brain bases. Autism Res 1:73–90PubMedCrossRef
79.
go back to reference Williams JH, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295PubMedCrossRef Williams JH, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295PubMedCrossRef
Metadata
Title
Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism
Authors
Sarah Jacot-Descombes
Neha Uppal
Bridget Wicinski
Micaela Santos
James Schmeidler
Panteleimon Giannakopoulos
Helmut Heinsein
Christoph Schmitz
Patrick R. Hof
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 1/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-0976-6

Other articles of this Issue 1/2012

Acta Neuropathologica 1/2012 Go to the issue