Skip to main content
Top
Published in: Clinical Neuroradiology 1/2012

01-03-2012 | Original Article

Decomposing the Hounsfield Unit

Probabilistic Segmentation of Brain Tissue in Computed Tomography

Authors: A. Kemmling, M.D., H. Wersching, M.D., K. Berger, M.D., S. Knecht, M.D., C. Groden, M.D., I. Nölte, M.D.

Published in: Clinical Neuroradiology | Issue 1/2012

Login to get access

Abstract

Purpose

The aim of this study was to present and evaluate a standardized technique for brain segmentation of cranial computed tomography (CT) using probabilistic partial volume tissue maps based on a database of high resolution T1 magnetic resonance images (MRI).

Methods

Probabilistic tissue maps of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) were derived from 600 normal brain MRIs (3.0 Tesla, T1–3D-turbo-field-echo) of 2 large community-based population studies (BiDirect and SEARCH Health studies). After partial tissue segmentation (FAST 4.0), MR images were linearly registered to MNI-152 standard space (FLIRT 5.5) with non-linear refinement (FNIRT 1.0) to obtain non-binary probabilistic volume images for each tissue class which were subsequently used for CT segmentation. From 150 normal cerebral CT scans a customized reference image in standard space was constructed with iterative non-linear registration to MNI-152 space. The inverse warp of tissue-specific probability maps to CT space (MNI-152 to individual CT) was used to decompose a CT image into tissue specific components (GM, WM, CSF).

Results

Potential benefits and utility of this novel approach with regard to unsupervised quantification of CT images and possible visual enhancement are addressed. Illustrative examples of tissue segmentation in different pathological cases including perfusion CT are presented.

Conclusion

Automated tissue segmentation of cranial CT images using highly refined tissue probability maps derived from high resolution MR images is feasible. Potential applications include automated quantification of WM in leukoaraiosis, CSF in hydrocephalic patients, GM in neurodegeneration and ischemia and perfusion maps with separate assessment of GM and WM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Babalola KO, Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, et al. Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI. Med Image Comput Comput Assist Interv 2008;11(Pt 1):409–16. Babalola KO, Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, et al. Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI. Med Image Comput Comput Assist Interv 2008;11(Pt 1):409–16.
2.
go back to reference Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A. Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 2009;30(4):1310–27. doi:10.1002/hbm.20599. Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A. Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 2009;30(4):1310–27. doi:10.1002/hbm.20599.
3.
go back to reference Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57. doi:10.1109/42.906424.PubMedCrossRef Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57. doi:10.1109/42.906424.PubMedCrossRef
4.
go back to reference Knecht S, Wersching H, Lohmann H, Bruchmann M, Duning T, Dziewas R, et al. High-normal blood pressure is associated with poor cognitive performance. Hypertension 2008;51(3):663–8. doi:HYPERTENSIONAHA.107.105577 [pii] (10.1161/HYPERTENSIONAHA.107.105577). Knecht S, Wersching H, Lohmann H, Bruchmann M, Duning T, Dziewas R, et al. High-normal blood pressure is associated with poor cognitive performance. Hypertension 2008;51(3):663–8. doi:HYPERTENSIONAHA.107.105577 [pii] (10.1161/HYPERTENSIONAHA.107.105577).
5.
go back to reference Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009;46(3):786–802. doi:S1053-8119(08)01297-4 [pii] (10.1016/j.neuroimage.2008.12.037). Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009;46(3):786–802. doi:S1053-8119(08)01297-4 [pii] (10.1016/j.neuroimage.2008.12.037).
6.
go back to reference Andersson JLR, Jenkinson M, Smith S. Non-linear optimisation. FMRIB technical report TR07JA1. 2007. Andersson JLR, Jenkinson M, Smith S. Non-linear optimisation. FMRIB technical report TR07JA1. 2007.
7.
go back to reference Vannier MW, Butterfield RL, Jordan D, Murphy WA, Levitt RG, Gado M. Multispectral analysis of magnetic resonance images. Radiology. 1985;154(1):221–4. Vannier MW, Butterfield RL, Jordan D, Murphy WA, Levitt RG, Gado M. Multispectral analysis of magnetic resonance images. Radiology. 1985;154(1):221–4.
8.
go back to reference Cordato NJ, Duggins AJ, Halliday GM, Morris JG, Pantelis C. Clinical deficits correlate with regional cerebral atrophy in progressive supranuclear palsy. Brain 2005;128(Pt 6):1259–66. doi:awh508 [pii] (10.1093/brain/awh508). Cordato NJ, Duggins AJ, Halliday GM, Morris JG, Pantelis C. Clinical deficits correlate with regional cerebral atrophy in progressive supranuclear palsy. Brain 2005;128(Pt 6):1259–66. doi:awh508 [pii] (10.1093/brain/awh508).
9.
go back to reference Sepulcre J, Sastre-Garriga J, Cercignani M, Ingle GT, Miller DH, Thompson AJ. Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 2006;63(8):1175–80. doi:63/8/1175 [pii] (10.1001/archneur.63.8.1175). Sepulcre J, Sastre-Garriga J, Cercignani M, Ingle GT, Miller DH, Thompson AJ. Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 2006;63(8):1175–80. doi:63/8/1175 [pii] (10.1001/archneur.63.8.1175).
10.
go back to reference Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 2005;64(6):1032–9. doi:64/6/1032 [pii] (10.1212/01.WNL.0000154530.72969.11). Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 2005;64(6):1032–9. doi:64/6/1032 [pii] (10.1212/01.WNL.0000154530.72969.11).
11.
go back to reference Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol 2006;5(10):828–34. doi:S1474-4422(06)70550-6 [pii] (10.1016/S1474-4422(06)70550-6). Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol 2006;5(10):828–34. doi:S1474-4422(06)70550-6 [pii] (10.1016/S1474-4422(06)70550-6).
12.
go back to reference Ciumas C, Savic I. Structural changes in patients with primary generalized tonic and clonic seizures. Neurology. 2006;67(4):683–6. doi:67/4/683 [pii] (10.1212/01.wnl.0000230171.23913.cf).PubMedCrossRef Ciumas C, Savic I. Structural changes in patients with primary generalized tonic and clonic seizures. Neurology. 2006;67(4):683–6. doi:67/4/683 [pii] (10.1212/01.wnl.0000230171.23913.cf).PubMedCrossRef
13.
go back to reference Henriksson KM, Wickstrom K, Maltesson N, Ericsson A, Karlsson J, Lindgren F, et al. A pilot study of facial, cranial and brain MRI morphometry in men with schizophrenia: part 2. Psychiatry Res 2006;147(2–3):187–95. doi:S0925-4927(06)00088-6 [pii] (10.1016/j.pscychresns.2006.03.004). Henriksson KM, Wickstrom K, Maltesson N, Ericsson A, Karlsson J, Lindgren F, et al. A pilot study of facial, cranial and brain MRI morphometry in men with schizophrenia: part 2. Psychiatry Res 2006;147(2–3):187–95. doi:S0925-4927(06)00088-6 [pii] (10.1016/j.pscychresns.2006.03.004).
14.
go back to reference Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005;162(12):2233–45. doi:162/12/2233 [pii] (10.1176/appi.ajp.162.12.2233). Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005;162(12):2233–45. doi:162/12/2233 [pii] (10.1176/appi.ajp.162.12.2233).
15.
go back to reference Strotzer M. One century of brain mapping using Brodmann areas. Klin Neuroradiol. 2009;19(3):179–86. doi:10.1007/s00062-009-9002-3.PubMedCrossRef Strotzer M. One century of brain mapping using Brodmann areas. Klin Neuroradiol. 2009;19(3):179–86. doi:10.1007/s00062-009-9002-3.PubMedCrossRef
16.
go back to reference Salomon EJ, Barfett J, Willems PW, Geibprasert S, Bacigaluppi S, Krings T. Dynamic CT angiography and CT perfusion employing a 320-detector row CT: protocol and current clinical applications. Klin Neuroradiol 2009;19(3):187–96. doi:10.1007/s00062-009-9019-7. Salomon EJ, Barfett J, Willems PW, Geibprasert S, Bacigaluppi S, Krings T. Dynamic CT angiography and CT perfusion employing a 320-detector row CT: protocol and current clinical applications. Klin Neuroradiol 2009;19(3):187–96. doi:10.1007/s00062-009-9019-7.
17.
go back to reference Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–37. doi:2/1/315 [pii] (10.1146/annurev.bioeng.2.1.315). Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–37. doi:2/1/315 [pii] (10.1146/annurev.bioeng.2.1.315).
18.
go back to reference Uchiyama Y, Yokoyama R, Ando H, Asano T, Kato H, Yamakawa H, et al. Computer-aided diagnosis scheme for detection of lacunar infarcts on MR images. Acad Radiol 2007;14(12):1554–61. doi:S1076-6332(07)00519-3 [pii] (10.1016/j.acra.2007.09.012). Uchiyama Y, Yokoyama R, Ando H, Asano T, Kato H, Yamakawa H, et al. Computer-aided diagnosis scheme for detection of lacunar infarcts on MR images. Acad Radiol 2007;14(12):1554–61. doi:S1076-6332(07)00519-3 [pii] (10.1016/j.acra.2007.09.012).
19.
go back to reference Maillard P, Delcroix N, Crivello F, Dufouil C, Gicquel S, Joliot M, et al. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology 2008;50(1):31–42. doi:10.1007/s00234-007-0312-3. Maillard P, Delcroix N, Crivello F, Dufouil C, Gicquel S, Joliot M, et al. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology 2008;50(1):31–42. doi:10.1007/s00234-007-0312-3.
20.
go back to reference Dichgans M, Filippi M, Bruning R, Iannucci G, Berchtenbreiter C, Minicucci L, et al. Quantitative MRI in CADASIL: correlation with disability and cognitive performance. Neurology 1999;52(7):1361–7. Dichgans M, Filippi M, Bruning R, Iannucci G, Berchtenbreiter C, Minicucci L, et al. Quantitative MRI in CADASIL: correlation with disability and cognitive performance. Neurology 1999;52(7):1361–7.
21.
go back to reference Barnes SR, Haacke EM, Ayaz M, Boikov AS, Kirsch W, Kido D. Semiautomated detection of cerebral microbleeds in magnetic resonance images. Magn Reson Imaging 2011;29(6):844–52. doi:S0730-725X(11)00097-X [pii] (10.1016/j.mri.2011.02.028). Barnes SR, Haacke EM, Ayaz M, Boikov AS, Kirsch W, Kido D. Semiautomated detection of cerebral microbleeds in magnetic resonance images. Magn Reson Imaging 2011;29(6):844–52. doi:S0730-725X(11)00097-X [pii] (10.1016/j.mri.2011.02.028).
22.
go back to reference Eckert B. Acute stroke therapy 1981–2009. Klin Neuroradiol. 2009;19(1):8–19. doi:10.1007/s00062-009-8033-0.PubMedCrossRef Eckert B. Acute stroke therapy 1981–2009. Klin Neuroradiol. 2009;19(1):8–19. doi:10.1007/s00062-009-8033-0.PubMedCrossRef
23.
go back to reference Kucinski T. Imaging in acute stroke—a personal view. Klin Neuroradiol. 2009;19(1):20–30. doi:10.1007/s00062-009-8030-3.PubMedCrossRef Kucinski T. Imaging in acute stroke—a personal view. Klin Neuroradiol. 2009;19(1):20–30. doi:10.1007/s00062-009-8030-3.PubMedCrossRef
24.
go back to reference Shinar D, Gross CR, Hier DB, Caplan LR, Mohr JP, Price TR, et al. Interobserver reliability in the interpretation of computed tomographic scans of stroke patients. Arch Neurol. 1987;44(2):149–55. Shinar D, Gross CR, Hier DB, Caplan LR, Mohr JP, Price TR, et al. Interobserver reliability in the interpretation of computed tomographic scans of stroke patients. Arch Neurol. 1987;44(2):149–55.
25.
go back to reference Schriger DL, Kalafut M, Starkman S, Krueger M, Saver JL. Cranial computed tomography interpretation in acute stroke: physician accuracy in determining eligibility for thrombolytic therapy. JAMA 1998;279(16):1293–7. doi:joc80138 [pii]. Schriger DL, Kalafut M, Starkman S, Krueger M, Saver JL. Cranial computed tomography interpretation in acute stroke: physician accuracy in determining eligibility for thrombolytic therapy. JAMA 1998;279(16):1293–7. doi:joc80138 [pii].
26.
go back to reference Grotta JC, Chiu D, Lu M, Patel S, Levine SR, Tilley BC, et al. Agreement and variability in the interpretation of early CT changes in stroke patients qualifying for intravenous rtPA therapy. Stroke. 1999;30(8):1528–33. Grotta JC, Chiu D, Lu M, Patel S, Levine SR, Tilley BC, et al. Agreement and variability in the interpretation of early CT changes in stroke patients qualifying for intravenous rtPA therapy. Stroke. 1999;30(8):1528–33.
27.
go back to reference Maldjian JA, Chalela J, Kasner SE, Liebeskind D, Detre JA. Automated CT segmentation and analysis for acute middle cerebral artery stroke. AJNR Am J Neuroradiol. 2001;22(6):1050–5. Maldjian JA, Chalela J, Kasner SE, Liebeskind D, Detre JA. Automated CT segmentation and analysis for acute middle cerebral artery stroke. AJNR Am J Neuroradiol. 2001;22(6):1050–5.
28.
go back to reference Payabvash S, Souza LC, Wang Y, Schaefer PW, Furie KL, Halpern EF, et al. Regional ischemic vulnerability of the brain to hypoperfusion: the need for location specific computed tomography perfusion thresholds in acute stroke patients. Stroke 2011;42(5):1255–60. doi:STROKEAHA.110.600940 [pii] (10.1161/STROKEAHA.110.600940). Payabvash S, Souza LC, Wang Y, Schaefer PW, Furie KL, Halpern EF, et al. Regional ischemic vulnerability of the brain to hypoperfusion: the need for location specific computed tomography perfusion thresholds in acute stroke patients. Stroke 2011;42(5):1255–60. doi:STROKEAHA.110.600940 [pii] (10.1161/STROKEAHA.110.600940).
29.
go back to reference Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ, et al. White matter thresholds for ischemic penumbra and infarct core in patients with acute stroke: CT perfusion study. Radiology 2008;247(3):818–25. doi:2473070551 [pii] (10.1148/radiol.2473070551). Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ, et al. White matter thresholds for ischemic penumbra and infarct core in patients with acute stroke: CT perfusion study. Radiology 2008;247(3):818–25. doi:2473070551 [pii] (10.1148/radiol.2473070551).
30.
go back to reference Dijkhuizen RM, Knollema S, van der Worp HB, Ter Horst GJ, De Wildt DJ, Berkelbach van der Sprenkel JW, et al. Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke. 1998;29(3):695–704. Dijkhuizen RM, Knollema S, van der Worp HB, Ter Horst GJ, De Wildt DJ, Berkelbach van der Sprenkel JW, et al. Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke. 1998;29(3):695–704.
31.
go back to reference Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke 2006;37(5):1211–6. doi:01.STR.0000217258.63925.6b [pii] (10.1161/01.STR.0000217258.63925.6b). Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke 2006;37(5):1211–6. doi:01.STR.0000217258.63925.6b [pii] (10.1161/01.STR.0000217258.63925.6b).
32.
go back to reference Hu Y, Xie M, editors. Automatic Segmentation of Brain CT Image Based on Multiplicate Features and Decision Tree. International Conference on Communications, Circuits and Systems, 2007. ICCCAS 2007.; 2007 11–13 July 2007; Kokura. Hu Y, Xie M, editors. Automatic Segmentation of Brain CT Image Based on Multiplicate Features and Decision Tree. International Conference on Communications, Circuits and Systems, 2007. ICCCAS 2007.; 2007 11–13 July 2007; Kokura.
33.
go back to reference Gupta V, Ambrosius W, Qian G, Blazejewska A, Kazmierski R, Urbanik A, et al. Automatic segmentation of cerebrospinal fluid, white and gray matter in unenhanced computed tomography images. Acad Radiol 2010;17(11):1350–8. doi:S1076-6332(10)00310-7 [pii] (10.1016/j.acra.2010.06.005). Gupta V, Ambrosius W, Qian G, Blazejewska A, Kazmierski R, Urbanik A, et al. Automatic segmentation of cerebrospinal fluid, white and gray matter in unenhanced computed tomography images. Acad Radiol 2010;17(11):1350–8. doi:S1076-6332(10)00310-7 [pii] (10.1016/j.acra.2010.06.005).
34.
go back to reference Ruttimann UE, Joyce EM, Rio DE, Eckardt MJ. Fully automated segmentation of cerebrospinal fluid in computed tomography. Psychiatry Res. 1993;50(2):101–19. doi:S0165-1781(05)80005-8 [pii]. Ruttimann UE, Joyce EM, Rio DE, Eckardt MJ. Fully automated segmentation of cerebrospinal fluid in computed tomography. Psychiatry Res. 1993;50(2):101–19. doi:S0165-1781(05)80005-8 [pii].
35.
go back to reference DeLeo JM, Schwartz M, Creasey H, Cutler N, Rapoport SI. Computer-assisted categorization of brain computerized tomography pixels into cerebrospinal fluid, white matter, and gray matter. Comput Biomed Res. 1985;18(1):79–88. DeLeo JM, Schwartz M, Creasey H, Cutler N, Rapoport SI. Computer-assisted categorization of brain computerized tomography pixels into cerebrospinal fluid, white matter, and gray matter. Comput Biomed Res. 1985;18(1):79–88.
36.
go back to reference Lee TH, Fauzi MFA, Komiya R. Segmentation of CT brain images using K-means and EM clustering. Fifth International Conference on Computer Graphics, Imaging and Visualisation (CGIV) 2008; 399–344. Lee TH, Fauzi MFA, Komiya R. Segmentation of CT brain images using K-means and EM clustering. Fifth International Conference on Computer Graphics, Imaging and Visualisation (CGIV) 2008; 399–344.
37.
go back to reference Ito H, Inoue K, Goto R, Kinomura S, Taki Y, Okada K, et al. Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry. Ann Nucl Med 2006;20(2):131–8. Ito H, Inoue K, Goto R, Kinomura S, Taki Y, Okada K, et al. Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry. Ann Nucl Med 2006;20(2):131–8.
38.
go back to reference Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001;356(1412):1293–322. doi:10.1098/rstb.2001.0915. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001;356(1412):1293–322. doi:10.1098/rstb.2001.0915.
Metadata
Title
Decomposing the Hounsfield Unit
Probabilistic Segmentation of Brain Tissue in Computed Tomography
Authors
A. Kemmling, M.D.
H. Wersching, M.D.
K. Berger, M.D.
S. Knecht, M.D.
C. Groden, M.D.
I. Nölte, M.D.
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Clinical Neuroradiology / Issue 1/2012
Print ISSN: 1869-1439
Electronic ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-011-0123-0

Other articles of this Issue 1/2012

Clinical Neuroradiology 1/2012 Go to the issue