Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 3/2012

01-03-2012 | Original Article

Debio 0507 primarily forms diaminocyclohexane-Pt-d(GpG) and -d(ApG) DNA adducts in HCT116 cells

Authors: C. L. King, S. Ramachandran, S. G. Chaney, L. Collins, J. A. Swenberg, K. E. deKrafft, W. Lin, L. Cicurel, M. Barbier

Published in: Cancer Chemotherapy and Pharmacology | Issue 3/2012

Login to get access

Abstract

Purpose

To characterize the cellular action mechanism of Debio 0507, we compared the major DNA adducts formed by Debio 0507- and oxaliplatin-treated HCT116 human colon carcinoma cells by a combination of inductively coupled plasma mass spectrometry (ICP-MS) and ultraperformance liquid chromatography mass spectrometry (UPLC-MS/MS).

Methods

HCT116 cells were treated with IC50 doses of Debio 0507 or oxaliplatin for 3 days. Total cellular Pt–DNA adducts were determined by ICP-MS. The DNA was digested, and the major Pt–DNA adducts formed by both drugs were characterized by UPLC/MS/MS essentially as described previously for cisplatin (Baskerville-Abraham et al. in Chem Res Toxicol 22:905–912, 2009).

Results

The Pt level/deoxynucleotide was 7.4/104 for DNA from Debio 0507-treated cells and 5.5/104 for oxaliplatin-treated cells following a 3-day treatment at the IC50 for each drug. UPLC-MS/MS in the positive ion mode confirmed the major Pt–DNA adducts formed by both drugs were dach-Pt-d(GpG) (904.2 m/z → 610 m/z and 904.2 m/z → 459 m/z) and dach-Pt-d(ApG) (888.2 m/z → 594 m/z and 888.2 m/z → 459 m/z).

Conclusions

These data show that the major DNA adducts formed by Debio 0507 are the dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts and at equitoxic doses Debio 0507 and oxaliplatin form similar levels of dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts. This suggests that the action mechanisms of Debio 0507 and oxaliplatin are similar at a cellular level.
Literature
1.
go back to reference Mani S, Graham MA, Bregman DB, Ivy P, Chaney SG (2002) Oxaliplatin: a review of evolving concepts. Cancer Invest 20:246–263PubMedCrossRef Mani S, Graham MA, Bregman DB, Ivy P, Chaney SG (2002) Oxaliplatin: a review of evolving concepts. Cancer Invest 20:246–263PubMedCrossRef
2.
go back to reference Cabral H, Nishiyama N, Okazaki S, Koyama H, Kataoka K (2005) Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J Control Release 101:223–232PubMedCrossRef Cabral H, Nishiyama N, Okazaki S, Koyama H, Kataoka K (2005) Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J Control Release 101:223–232PubMedCrossRef
4.
go back to reference Cabral H, Nishiyama N, Kataoka K (2007) Optimization of (1,2-diamino-cyclohexane)platinum(II)-loaded polymeric micelles directed to improve tumor targeting and enhanced antitumor activity. J Control Release 121:146–155PubMedCrossRef Cabral H, Nishiyama N, Kataoka K (2007) Optimization of (1,2-diamino-cyclohexane)platinum(II)-loaded polymeric micelles directed to improve tumor targeting and enhanced antitumor activity. J Control Release 121:146–155PubMedCrossRef
5.
go back to reference Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53:L3–L11CrossRef Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53:L3–L11CrossRef
6.
go back to reference Jennerwein MM, Eastman A, Khokhar AR (1989) Characterization of adducts produced in DNA by isomeric 1,2-diaminocyclohexaneplatinum(II) complexes. Chem-Biol Interact 70:39–49PubMedCrossRef Jennerwein MM, Eastman A, Khokhar AR (1989) Characterization of adducts produced in DNA by isomeric 1,2-diaminocyclohexaneplatinum(II) complexes. Chem-Biol Interact 70:39–49PubMedCrossRef
7.
go back to reference Page JD, Husain I, Sancar A, Chaney SG (1990) Effect of the diaminocyclohexane carrier ligand on platinum adduct formation, repair, and lethality. Biochemistry 29:1016–1024PubMedCrossRef Page JD, Husain I, Sancar A, Chaney SG (1990) Effect of the diaminocyclohexane carrier ligand on platinum adduct formation, repair, and lethality. Biochemistry 29:1016–1024PubMedCrossRef
8.
go back to reference Springler B, Whittington DA, Lippard SJ (2001) 2.4 A crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand crosslink in a DNA dodecamer duplex. Inorg Chem 40:5596–5602CrossRef Springler B, Whittington DA, Lippard SJ (2001) 2.4 A crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand crosslink in a DNA dodecamer duplex. Inorg Chem 40:5596–5602CrossRef
9.
go back to reference Wu Y, Pradham P, Havener J, Boysen G, Swenberg JA, Campbell SL, Chaney SG (2004) NMR solution structure of an oxaliplatin 1,2-d(GpG) intrastrand crosslink in a DNA dodecamer duplex. J Mol Biol 341:1251–1269PubMedCrossRef Wu Y, Pradham P, Havener J, Boysen G, Swenberg JA, Campbell SL, Chaney SG (2004) NMR solution structure of an oxaliplatin 1,2-d(GpG) intrastrand crosslink in a DNA dodecamer duplex. J Mol Biol 341:1251–1269PubMedCrossRef
10.
go back to reference Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan NV, Chaney SG (2007) Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastrand crosslinks reveal differences in their conformational dynamics. J Mol Biol 373:1123–1140PubMedCrossRef Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan NV, Chaney SG (2007) Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastrand crosslinks reveal differences in their conformational dynamics. J Mol Biol 373:1123–1140PubMedCrossRef
11.
go back to reference Treiber DK, Zhai X, Jantzen HM, Essigmann JM (1994) Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF. Proc Natl Acad Sci USA 91:5672–5676PubMedCrossRef Treiber DK, Zhai X, Jantzen HM, Essigmann JM (1994) Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF. Proc Natl Acad Sci USA 91:5672–5676PubMedCrossRef
12.
go back to reference Ohndorf U-M, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708–712PubMedCrossRef Ohndorf U-M, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708–712PubMedCrossRef
13.
go back to reference Wei M, Cohen SM, Silverman AP, Lippard SJ (2001) Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. J Biol Chem 276:38774–38780PubMedCrossRef Wei M, Cohen SM, Silverman AP, Lippard SJ (2001) Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. J Biol Chem 276:38774–38780PubMedCrossRef
14.
go back to reference Zdraveski ZZ, Mello JA, Farinelli CK, Essigmann JM, Marinus MG (2002) MutS preferentially recognizes cisplatin- over oxaliplatin-modified DNA. J Biol Chem 277:1255–1260PubMedCrossRef Zdraveski ZZ, Mello JA, Farinelli CK, Essigmann JM, Marinus MG (2002) MutS preferentially recognizes cisplatin- over oxaliplatin-modified DNA. J Biol Chem 277:1255–1260PubMedCrossRef
15.
go back to reference Jung Y, Lippard SJ (2003) Nature of full length HMGB1 binding to cisplatin-modified DNA. Biochemistry 42:2664–2671PubMedCrossRef Jung Y, Lippard SJ (2003) Nature of full length HMGB1 binding to cisplatin-modified DNA. Biochemistry 42:2664–2671PubMedCrossRef
16.
go back to reference Malina J, Novakova O, Vojtiskova M, Natille G, Brabek V (2007) Conformation of DNA intrastrand cross-links of antitumor oxaliplatin and its enantiomeric analog. Biophys J 93:3950–3962PubMedCrossRef Malina J, Novakova O, Vojtiskova M, Natille G, Brabek V (2007) Conformation of DNA intrastrand cross-links of antitumor oxaliplatin and its enantiomeric analog. Biophys J 93:3950–3962PubMedCrossRef
17.
go back to reference Chvalova K, Sari MA, Bombard S, Kozelka J (2008) LEF-1 recognition of platinated DNA sequences within double stranded DNA. Influence of flanking bases. J Inorg Biochem 102:242–250PubMedCrossRef Chvalova K, Sari MA, Bombard S, Kozelka J (2008) LEF-1 recognition of platinated DNA sequences within double stranded DNA. Influence of flanking bases. J Inorg Biochem 102:242–250PubMedCrossRef
18.
go back to reference Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A (1994) HMG-domain proteins inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA 91:10394–10398PubMedCrossRef Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A (1994) HMG-domain proteins inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA 91:10394–10398PubMedCrossRef
19.
go back to reference Fink D, Nebel S, Aebi S, Zheng H, Cenni B et al (1996) The role of mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886PubMed Fink D, Nebel S, Aebi S, Zheng H, Cenni B et al (1996) The role of mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886PubMed
20.
go back to reference Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chaney SG (1998) The role of hMLH1, hMSH3 and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 58:3579–3585PubMed Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chaney SG (1998) The role of hMLH1, hMSH3 and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 58:3579–3585PubMed
21.
go back to reference Zhai X, Beckmann H, Jantzen HM, Essigmann JM (1998) Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry 37:16307–16315PubMedCrossRef Zhai X, Beckmann H, Jantzen HM, Essigmann JM (1998) Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry 37:16307–16315PubMedCrossRef
22.
go back to reference Vaisman A, Lim SE, Patrick SM, Copeland WC, Hinkle DC, Turchi JJ, Chaney SG (1999) Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. Biochemistry 38:11026–11039PubMedCrossRef Vaisman A, Lim SE, Patrick SM, Copeland WC, Hinkle DC, Turchi JJ, Chaney SG (1999) Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. Biochemistry 38:11026–11039PubMedCrossRef
23.
go back to reference Butour J-L, Johnson NP (1986) Chemical reactivity of monofunctional platinum-DNA adducts. Biochemistry 25:4534–4539PubMedCrossRef Butour J-L, Johnson NP (1986) Chemical reactivity of monofunctional platinum-DNA adducts. Biochemistry 25:4534–4539PubMedCrossRef
24.
go back to reference Bancroft DP, Lepre CA, Lippard SJ (1990) 195Pt NMR kinetic and mechanistic studies of cis- and trans-diamminedichloroplatinum(II) binding to DNA. J Am Chem Soc 112:6860–6871CrossRef Bancroft DP, Lepre CA, Lippard SJ (1990) 195Pt NMR kinetic and mechanistic studies of cis- and trans-diamminedichloroplatinum(II) binding to DNA. J Am Chem Soc 112:6860–6871CrossRef
25.
go back to reference Johnson NP, Mazard AM, Escalier J, Macquet JP (1985) Mechanism of the reaction between cis-[PtCl2(NH3)2] and DNA in vitro. J Am Chem Soc 107:6376–6380CrossRef Johnson NP, Mazard AM, Escalier J, Macquet JP (1985) Mechanism of the reaction between cis-[PtCl2(NH3)2] and DNA in vitro. J Am Chem Soc 107:6376–6380CrossRef
26.
go back to reference Butour JL, Mazard AM, Macquet JP (1985) Kinetics of the reaction of cis-platinum compounds with DNA in vitro. Biochem Biophys Res Commun 133:347–353PubMedCrossRef Butour JL, Mazard AM, Macquet JP (1985) Kinetics of the reaction of cis-platinum compounds with DNA in vitro. Biochem Biophys Res Commun 133:347–353PubMedCrossRef
27.
go back to reference Knox RJ, Friedlos F, Lydall DA, Roberts JJ (1986) Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 46:1972–1979PubMed Knox RJ, Friedlos F, Lydall DA, Roberts JJ (1986) Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 46:1972–1979PubMed
28.
go back to reference Mauldin SK, Plescia M, Richard FA, Wyrick SD, Voyksner RD, Chaney SG (1988) Displacement of the bidentate malonate ligand from (d, l-trans-1,2-diaminocyclohexane)malonatoplatinum(II) by physiologically important compounds in vitro. Biochem Pharmacol 37:3321–3333PubMedCrossRef Mauldin SK, Plescia M, Richard FA, Wyrick SD, Voyksner RD, Chaney SG (1988) Displacement of the bidentate malonate ligand from (d, l-trans-1,2-diaminocyclohexane)malonatoplatinum(II) by physiologically important compounds in vitro. Biochem Pharmacol 37:3321–3333PubMedCrossRef
29.
go back to reference Mauldin SK, Gibbons G, Wyrick SD, Chaney SG (1988) Intracellular biotransformation of platinum compounds with the 1,2-diaminocyclohexane carrier ligand in the L1210 cell line. Cancer Res 48:5136–5144PubMed Mauldin SK, Gibbons G, Wyrick SD, Chaney SG (1988) Intracellular biotransformation of platinum compounds with the 1,2-diaminocyclohexane carrier ligand in the L1210 cell line. Cancer Res 48:5136–5144PubMed
30.
go back to reference Luo FR, Wyrick SD, Chaney SG (1999) Biotransformations of oxaliplatin in rat blood in vitro. J Biochem Molec Toxicol 13:159–169CrossRef Luo FR, Wyrick SD, Chaney SG (1999) Biotransformations of oxaliplatin in rat blood in vitro. J Biochem Molec Toxicol 13:159–169CrossRef
31.
go back to reference Luo FR, Wyrick SD, Chaney SG (1998) Cytotoxicity, cellular uptake, and cellular biotransformations of oxaliplatin in human colon carcinoma cells. Oncol Res 10:595–603PubMed Luo FR, Wyrick SD, Chaney SG (1998) Cytotoxicity, cellular uptake, and cellular biotransformations of oxaliplatin in human colon carcinoma cells. Oncol Res 10:595–603PubMed
32.
go back to reference Segal E, Le Pecq J-B (1985) Role of ligand exchange processes in the reaction kinetics of the antitumor drug cis-diamminedichloroplatinum(II) with its targets. Cancer Res 45:492–498PubMed Segal E, Le Pecq J-B (1985) Role of ligand exchange processes in the reaction kinetics of the antitumor drug cis-diamminedichloroplatinum(II) with its targets. Cancer Res 45:492–498PubMed
33.
go back to reference Davies MS, Berners-Price S, Hambley TW (1998) Rates of platination of AG and GG containing double-stranded oligonucleotides: Insights into why cisplatin binds to GG and AG but not GA sequences in DNA. J Am Chem Soc 120:11380–11390CrossRef Davies MS, Berners-Price S, Hambley TW (1998) Rates of platination of AG and GG containing double-stranded oligonucleotides: Insights into why cisplatin binds to GG and AG but not GA sequences in DNA. J Am Chem Soc 120:11380–11390CrossRef
34.
go back to reference Hah SS, Stivers KM, de Vere White RW, Henderson PT (2006) Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry. Chem Res Toxicol 19:622–626PubMedCrossRef Hah SS, Stivers KM, de Vere White RW, Henderson PT (2006) Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry. Chem Res Toxicol 19:622–626PubMedCrossRef
35.
go back to reference Hah SS, Sumbad RA, de Vere White RW, Turteltaub KW, Henderson PT (2007) Characterization of oxaliplatin-DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations. Chem Res Toxicol 20:1745–1751PubMedCrossRef Hah SS, Sumbad RA, de Vere White RW, Turteltaub KW, Henderson PT (2007) Characterization of oxaliplatin-DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations. Chem Res Toxicol 20:1745–1751PubMedCrossRef
36.
go back to reference Hah SS, Henderson PT, Turteltaub KW (2010) Towards biomarker-dependent individualized chemotherapy: exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry. Biorg Med Chem Lett 20:2448–2451CrossRef Hah SS, Henderson PT, Turteltaub KW (2010) Towards biomarker-dependent individualized chemotherapy: exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry. Biorg Med Chem Lett 20:2448–2451CrossRef
37.
go back to reference Fichtinger-Schepman AMJ, van Dijk-Knijnenburg HCM, van der Velde-Visser SD, Berends F, Baan RA (1995) Cisplatin and carboplatin-DNA adducts: is Pt-AG the cytotoxic lesion? Carcinogenesis 16:2447–2453PubMedCrossRef Fichtinger-Schepman AMJ, van Dijk-Knijnenburg HCM, van der Velde-Visser SD, Berends F, Baan RA (1995) Cisplatin and carboplatin-DNA adducts: is Pt-AG the cytotoxic lesion? Carcinogenesis 16:2447–2453PubMedCrossRef
38.
go back to reference Blommaert FA, van Dijk-Knijnenburg HCM, Dijt FJ, Denengelse L, Baan RA, Berends F, Fichtinger-Schepman AMJ (1995) Formation of DNA adducts by the anticancer drug carboplatin: different nucleotide sequence preferences in vitro and in cells. Biochemistry 34:8474–8480PubMedCrossRef Blommaert FA, van Dijk-Knijnenburg HCM, Dijt FJ, Denengelse L, Baan RA, Berends F, Fichtinger-Schepman AMJ (1995) Formation of DNA adducts by the anticancer drug carboplatin: different nucleotide sequence preferences in vitro and in cells. Biochemistry 34:8474–8480PubMedCrossRef
39.
go back to reference Boudny V, Vrana O, Gaucheron F, Kleinwachter V, Leng M, Brabec V (1992) Biophysical analysis of DNA modified by 1,2-diaminocyclohexane platinum(II) complexes. Nucleic Acids Res 20:267–272PubMedCrossRef Boudny V, Vrana O, Gaucheron F, Kleinwachter V, Leng M, Brabec V (1992) Biophysical analysis of DNA modified by 1,2-diaminocyclohexane platinum(II) complexes. Nucleic Acids Res 20:267–272PubMedCrossRef
40.
go back to reference Saris CP, van de Vaart PJM, Rietbroek RC, Blommaert FA (1996) In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis 17:2763–2769PubMedCrossRef Saris CP, van de Vaart PJM, Rietbroek RC, Blommaert FA (1996) In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis 17:2763–2769PubMedCrossRef
41.
go back to reference Woynarowski JM, Chapman WG, Napier C, Herzig MCS, Juniewicz P (1998) Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA. Molec Pharmacol 54:770–777 Woynarowski JM, Chapman WG, Napier C, Herzig MCS, Juniewicz P (1998) Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA. Molec Pharmacol 54:770–777
42.
go back to reference Luo FR, Yen TY, Wyrick SD, Chaney SG (1999) High-performance liquid chromatographic separation of the biotransformation products of oxaliplatin. J Chromatog B 724:345–356CrossRef Luo FR, Yen TY, Wyrick SD, Chaney SG (1999) High-performance liquid chromatographic separation of the biotransformation products of oxaliplatin. J Chromatog B 724:345–356CrossRef
43.
go back to reference Le Pla RC, Ritchie KJ, Henderson CJ, Wolf CR, Harrington CF, Farmer PB (2007) Development of a liquid chromatography-electrospray ionization tandem mass spectrometry method for detecting oxaliplatin-DNA intrastrand cross-links in biological samples. Chem Res Toxicol 20:1177–1182PubMedCrossRef Le Pla RC, Ritchie KJ, Henderson CJ, Wolf CR, Harrington CF, Farmer PB (2007) Development of a liquid chromatography-electrospray ionization tandem mass spectrometry method for detecting oxaliplatin-DNA intrastrand cross-links in biological samples. Chem Res Toxicol 20:1177–1182PubMedCrossRef
44.
go back to reference Mowaka S, Linschied M (2008) Separation and characterization of oxaliplatin dinucleotides from DNA using HPLC-ESI-ion trap mass spectrometry. Anal Bioanal Chem 392:819–830PubMedCrossRef Mowaka S, Linschied M (2008) Separation and characterization of oxaliplatin dinucleotides from DNA using HPLC-ESI-ion trap mass spectrometry. Anal Bioanal Chem 392:819–830PubMedCrossRef
45.
go back to reference Kerr SL, Shoeib T, Sharp BL (2008) A study of oxaliplatin-nucleobase interactions using ion trap electrospray mass spectrometry. Anal Bioanal Chem 391:2339–2348PubMedCrossRef Kerr SL, Shoeib T, Sharp BL (2008) A study of oxaliplatin-nucleobase interactions using ion trap electrospray mass spectrometry. Anal Bioanal Chem 391:2339–2348PubMedCrossRef
46.
go back to reference Baskerville-Abraham IM, Boysen G, Troutman JM, Mutlu E, Collins L, deKrafft KE, Lin W, King C, Chaney SG, Swenberg JA (2009) Development of an ultraperformance liquid chromatography/mass spectrometry method to quantify cisplatin 1,2 intrastrand guanine–guanine adducts. Chem Res Toxicol 22:905–912PubMedCrossRef Baskerville-Abraham IM, Boysen G, Troutman JM, Mutlu E, Collins L, deKrafft KE, Lin W, King C, Chaney SG, Swenberg JA (2009) Development of an ultraperformance liquid chromatography/mass spectrometry method to quantify cisplatin 1,2 intrastrand guanine–guanine adducts. Chem Res Toxicol 22:905–912PubMedCrossRef
47.
go back to reference Eastman A (1983) Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry 22:3927–3933PubMedCrossRef Eastman A (1983) Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry 22:3927–3933PubMedCrossRef
48.
go back to reference Eastman A (1986) Reevaluation of the interactions of cis-diamminedichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 25:3912–3915PubMedCrossRef Eastman A (1986) Reevaluation of the interactions of cis-diamminedichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 25:3912–3915PubMedCrossRef
Metadata
Title
Debio 0507 primarily forms diaminocyclohexane-Pt-d(GpG) and -d(ApG) DNA adducts in HCT116 cells
Authors
C. L. King
S. Ramachandran
S. G. Chaney
L. Collins
J. A. Swenberg
K. E. deKrafft
W. Lin
L. Cicurel
M. Barbier
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 3/2012
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-011-1744-3

Other articles of this Issue 3/2012

Cancer Chemotherapy and Pharmacology 3/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine