Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Study protocol

Daptomycin versus placebo as an adjunct to beta-lactam therapy in the treatment of Staphylococcus aureus bacteremia: study protocol for a randomized controlled trial

Authors: Matthew P. Cheng, Alexander Lawandi, Guillaume Butler-Laporte, Katryn Paquette, Todd C. Lee

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Staphylococcus aureus bacteremia is associated with significant morbidity and mortality. To treat this infection, the current standard of care includes intravenous anti-staphylococcal beta-lactam antibiotics and obtaining adequate source control. Combination therapy with an aminoglycoside or rifampin, despite early promise, can no longer be routinely recommended due to an absence of proven benefit and risk of harm. Daptomycin is a rapidly acting bactericidal antibiotic that is approved for the treatment of Staphylococcus aureus bacteremia as monotherapy but has not been shown to be superior to the current standard of care. As demonstrated in vitro, the addition of daptomycin to beta-lactam therapy may result in enhanced anti-staphylococcal activity. Our objective is to assess the efficacy and safety of prescribing the combination of daptomycin with cefazolin or cloxacillin for the treatment of methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia in adults. We hypothesize that adjunctive therapy with daptomycin will reduce the duration of bacteremia in this population.

Methods

The DASH-RCT trial is a randomized, double blind, placebo-controlled trial designed per the Standard Protocol Items: Recommendation for Interventional Trials (SPIRIT) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. We recruit adults with confirmed MSSA bacteremia, at the McGill University Health Center. Patients are eligible if they are 18 years or older, can receive cefazolin or cloxacillin monotherapy, and are enrolled within 72 h of the first blood culture being drawn. Exclusion criteria include anaphylaxis to study drugs, having polymicrobial bacteremia, anticipated hospital admission for < 5 days, and healthcare team refusal. While receiving standard of care, study patients are randomized to a 5-day course of adjunctive daptomycin or placebo. The trial began in December 2016 and is expected to end in December 2018, after recruiting an estimated 102 patients.

Discussion

The DASH-RCT will compare the use of daptomycin as an adjunct to an anti-staphylococcal beta-lactam versus placebo in the treatment of MSSA bacteremia. We believe that a short course of dual therapy will result in earlier eradication of bacteremia and that subsequent research could evaluate effects on metastatic infection, relapse, and/or mortality. Ongoing issues in the trial include a delay between presentation of infection, enrollment in the trial, and the potential for unrecognized deep foci of infection at diagnosis.

Trial registration

ClinicalTrials.gov, NCT02972983. Registered on 25 November 2016.
Appendix
Available only for authorised users
Literature
1.
go back to reference El Atrouni WI, et al. Temporal trends in the incidence of Staphylococcus aureus bacteremia in Olmsted County, Minnesota, 1998 to 2005: a population-based study. Clin Infect Dis. 2009;49(12):e130–8.CrossRefPubMedPubMedCentral El Atrouni WI, et al. Temporal trends in the incidence of Staphylococcus aureus bacteremia in Olmsted County, Minnesota, 1998 to 2005: a population-based study. Clin Infect Dis. 2009;49(12):e130–8.CrossRefPubMedPubMedCentral
2.
go back to reference Rhee Y, et al. Evolving epidemiology of Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol. 2015;36(12):1417–22.CrossRefPubMed Rhee Y, et al. Evolving epidemiology of Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol. 2015;36(12):1417–22.CrossRefPubMed
3.
go back to reference Troidle L, et al. Complications associated with the development of bacteremia with Staphylococcus aureus. Hemodial Int. 2007;11(1):72–5.CrossRefPubMed Troidle L, et al. Complications associated with the development of bacteremia with Staphylococcus aureus. Hemodial Int. 2007;11(1):72–5.CrossRefPubMed
4.
go back to reference Bai AD, et al. Impact of infectious disease consultation on quality of care, mortality, and length of stay in Staphylococcus aureus bacteremia: results from a large multicenter cohort study. Clin Infect Dis. 2015;60(10):1451–61.CrossRefPubMed Bai AD, et al. Impact of infectious disease consultation on quality of care, mortality, and length of stay in Staphylococcus aureus bacteremia: results from a large multicenter cohort study. Clin Infect Dis. 2015;60(10):1451–61.CrossRefPubMed
5.
go back to reference Goto M, et al. Association of evidence-based care processes with mortality in staphylococcus aureus bacteremia at veterans health administration hospitals, 2003-2014. JAMA Intern Med. 2017;177(10):1489–97.CrossRefPubMedPubMedCentral Goto M, et al. Association of evidence-based care processes with mortality in staphylococcus aureus bacteremia at veterans health administration hospitals, 2003-2014. JAMA Intern Med. 2017;177(10):1489–97.CrossRefPubMedPubMedCentral
6.
go back to reference Cheng MP, Rene P, Cheng AP, Lee TC. Back to the Future: Penicillin-Susceptible Staphylococcus aureus. Am J Med. 2016;129(12):1331–33.CrossRefPubMed Cheng MP, Rene P, Cheng AP, Lee TC. Back to the Future: Penicillin-Susceptible Staphylococcus aureus. Am J Med. 2016;129(12):1331–33.CrossRefPubMed
7.
go back to reference Yahav D, et al. Risk factors for long-term mortality of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2016;35(5):785–90.CrossRefPubMed Yahav D, et al. Risk factors for long-term mortality of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2016;35(5):785–90.CrossRefPubMed
8.
go back to reference Chang FY, et al. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore). 2003;82(5):322–32.CrossRef Chang FY, et al. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore). 2003;82(5):322–32.CrossRef
9.
go back to reference Mermel LA, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001;32(9):1249–72.CrossRefPubMed Mermel LA, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001;32(9):1249–72.CrossRefPubMed
10.
go back to reference Mermel LA, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.CrossRefPubMedPubMedCentral Mermel LA, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.CrossRefPubMedPubMedCentral
11.
go back to reference Bai AD, et al. Comparative effectiveness of cefazolin versus cloxacillin as definitive antibiotic therapy for MSSA bacteraemia: results from a large multicentre cohort study. J Antimicrob Chemother. 2015;70(5):1539–46.CrossRefPubMed Bai AD, et al. Comparative effectiveness of cefazolin versus cloxacillin as definitive antibiotic therapy for MSSA bacteraemia: results from a large multicentre cohort study. J Antimicrob Chemother. 2015;70(5):1539–46.CrossRefPubMed
12.
go back to reference McDanel JS, et al. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis. 2017;65(1):100–6.CrossRefPubMed McDanel JS, et al. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis. 2017;65(1):100–6.CrossRefPubMed
13.
go back to reference Korzeniowski O, Sande MA. Combination antimicrobial therapy for staphylococcus aureus endocarditis in patients addicted to parenteral drugs and in nonaddicts: a prospective study. Ann Intern Med. 1982;97(4):496–503.CrossRefPubMed Korzeniowski O, Sande MA. Combination antimicrobial therapy for staphylococcus aureus endocarditis in patients addicted to parenteral drugs and in nonaddicts: a prospective study. Ann Intern Med. 1982;97(4):496–503.CrossRefPubMed
14.
go back to reference Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435-86. Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435-86.
15.
go back to reference Davis JS, et al. Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis. 2016;62(2):173–80.CrossRefPubMed Davis JS, et al. Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis. 2016;62(2):173–80.CrossRefPubMed
16.
go back to reference Tong SYC, et al. CAMERA2 – combination antibiotic therapy for methicillin-resistant Staphylococcus aureus infection: study protocol for a randomised controlled trial. Trials. 2016;17(1):170.CrossRefPubMedPubMedCentral Tong SYC, et al. CAMERA2 – combination antibiotic therapy for methicillin-resistant Staphylococcus aureus infection: study protocol for a randomised controlled trial. Trials. 2016;17(1):170.CrossRefPubMedPubMedCentral
17.
go back to reference Richter SS, et al. The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother. 2003;52(1):123–7.CrossRefPubMed Richter SS, et al. The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother. 2003;52(1):123–7.CrossRefPubMed
18.
go back to reference Fowler VGJ, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.CrossRefPubMed Fowler VGJ, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.CrossRefPubMed
19.
go back to reference Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta Biomembr. 2006;1758(9):1215–23.CrossRef Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta Biomembr. 2006;1758(9):1215–23.CrossRef
20.
go back to reference Steenbergen JN, et al. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother. 2005;55(3):283–8.CrossRefPubMed Steenbergen JN, et al. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother. 2005;55(3):283–8.CrossRefPubMed
21.
go back to reference Rand KH, Houck HJ. Synergy of daptomycin with oxacillin and other β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(8):2871–5.CrossRefPubMedPubMedCentral Rand KH, Houck HJ. Synergy of daptomycin with oxacillin and other β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(8):2871–5.CrossRefPubMedPubMedCentral
22.
go back to reference Dhand A, et al. Use of antistaphylococcal β-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53(2):158–63.CrossRefPubMedPubMedCentral Dhand A, et al. Use of antistaphylococcal β-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53(2):158–63.CrossRefPubMedPubMedCentral
23.
go back to reference Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin Ther. 2014;36(10):1303–16. Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin Ther. 2014;36(10):1303–16.
24.
go back to reference Sakoulas G, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56(2):838–44.CrossRefPubMedPubMedCentral Sakoulas G, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56(2):838–44.CrossRefPubMedPubMedCentral
25.
go back to reference Sakoulas G, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58(3):1494–500.CrossRefPubMedPubMedCentral Sakoulas G, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58(3):1494–500.CrossRefPubMedPubMedCentral
26.
go back to reference Smith JR, et al. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015;70(6):1738–43.PubMedPubMedCentral Smith JR, et al. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015;70(6):1738–43.PubMedPubMedCentral
27.
go back to reference Mehta S, et al. β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother. 2012;56(12):6192–200.CrossRefPubMedPubMedCentral Mehta S, et al. β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother. 2012;56(12):6192–200.CrossRefPubMedPubMedCentral
28.
go back to reference Snydman DR, McDermott LA, Jacobus NV. Evaluation of in vitro interaction of daptomycin with gentamicin or beta-lactam antibiotics against Staphylococcus aureus and Enterococci by FIC index and timed-kill curves. J Chemother. 2005;17(6):614–21.CrossRefPubMed Snydman DR, McDermott LA, Jacobus NV. Evaluation of in vitro interaction of daptomycin with gentamicin or beta-lactam antibiotics against Staphylococcus aureus and Enterococci by FIC index and timed-kill curves. J Chemother. 2005;17(6):614–21.CrossRefPubMed
29.
go back to reference Werth BJ, et al. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57(1):66–73.CrossRefPubMedPubMedCentral Werth BJ, et al. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57(1):66–73.CrossRefPubMedPubMedCentral
30.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMed Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMed
31.
go back to reference Ardalan MR, et al. Aspergillosis after renal transplantation. Saudi J Kidney Dis Transpl. 2005;16(3):330–3.PubMed Ardalan MR, et al. Aspergillosis after renal transplantation. Saudi J Kidney Dis Transpl. 2005;16(3):330–3.PubMed
32.
go back to reference DeMets DL, Lan KK. Interim analysis: the alpha spending function approach. Stat Med. 1994;13(13–14):1341–52. discussion 1353-6CrossRefPubMed DeMets DL, Lan KK. Interim analysis: the alpha spending function approach. Stat Med. 1994;13(13–14):1341–52. discussion 1353-6CrossRefPubMed
33.
go back to reference Butler-Laporte G, et al. Using MRSA screening tests to predict methicillin resistance in Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2016;60(12):7444–8.PubMedPubMedCentral Butler-Laporte G, et al. Using MRSA screening tests to predict methicillin resistance in Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2016;60(12):7444–8.PubMedPubMedCentral
34.
go back to reference Kang DH, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366(26):2466–73.CrossRefPubMed Kang DH, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366(26):2466–73.CrossRefPubMed
35.
go back to reference Thwaites GE, Scarborough M, Szubert A, et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10121):668-78. Thwaites GE, Scarborough M, Szubert A, et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10121):668-78.
Metadata
Title
Daptomycin versus placebo as an adjunct to beta-lactam therapy in the treatment of Staphylococcus aureus bacteremia: study protocol for a randomized controlled trial
Authors
Matthew P. Cheng
Alexander Lawandi
Guillaume Butler-Laporte
Katryn Paquette
Todd C. Lee
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2668-6

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue