Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2020

Open Access 01-12-2020 | Dapagliflozin | Review

SGLT2i: beyond the glucose-lowering effect

Authors: Lihua Ni, Cheng Yuan, Guopeng Chen, Changjiang Zhang, Xiaoyan Wu

Published in: Cardiovascular Diabetology | Issue 1/2020

Login to get access

Abstract

Sodium/glucose cotransporter-2 inhibitors (SGLT2i) are a new type of glucose-lowering drug that can reduce blood glucose by inhibiting its reabsorption in proximal tubules and by promoting urinary glucose excretion. SGLT2i are widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). In recent studies, SGLT2i were found to not only reduce blood glucose but also protect the heart and kidney, which can significantly reduce cardiovascular events, delay the progression of renal failure, greatly improve the quality of life of patients, and reduce medical expenses for families and society. As adverse cardiac and renal events are the most common and serious complications of T2DM, it is very important to understand the cardio- and renoprotective mechanisms of SGLT2i. This article reviews the historical development, pharmacological mechanism, heart and kidney protection and safety of SGLT2i. The information presented provides a theoretical basis for the clinical prevention and treatment of diabetes and its complications and for the development of new glucose-lowering drugs.
Literature
1.
go back to reference Mugeni R, Aduwo JY, Briker SM, Hormenu T, Sumner AE, Horlyck-Romanovsky MF. A review of diabetes prediction Equations in African descent populations. Front Endocrinol. 2019;10:663. Mugeni R, Aduwo JY, Briker SM, Hormenu T, Sumner AE, Horlyck-Romanovsky MF. A review of diabetes prediction Equations in African descent populations. Front Endocrinol. 2019;10:663.
2.
go back to reference Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019;62(10):1789–801.PubMedPubMedCentral Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019;62(10):1789–801.PubMedPubMedCentral
3.
go back to reference Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of beta-cells: diabetes and beyond. Adv Drug Deliv Rev. 2019;139:16–31.PubMed Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of beta-cells: diabetes and beyond. Adv Drug Deliv Rev. 2019;139:16–31.PubMed
4.
go back to reference Petrie JR, Rossing PR, Campbell IW. Metformin and cardiorenal outcomes in diabetes: A reappraisal. Diab Obes Metab. 2020;22(6):904–15. Petrie JR, Rossing PR, Campbell IW. Metformin and cardiorenal outcomes in diabetes: A reappraisal. Diab Obes Metab. 2020;22(6):904–15.
5.
go back to reference Giugliano D, De Nicola L, Maiorino MI, Bellastella G, Esposito K. Type 2 diabetes and the kidney: insights from cardiovascular outcome trials. Diab Obes Metab. 2019;21(8):1790–800. Giugliano D, De Nicola L, Maiorino MI, Bellastella G, Esposito K. Type 2 diabetes and the kidney: insights from cardiovascular outcome trials. Diab Obes Metab. 2019;21(8):1790–800.
6.
go back to reference Giugliano D, Ceriello A, De Nicola L, Perrone-Filardi P, Cosentino F, Esposito K. Primary versus secondary cardiorenal prevention in type 2 diabetes: which newer anti-hyperglycaemic drug matters? Diab Obes Metab. 2020;22(2):149–57. Giugliano D, Ceriello A, De Nicola L, Perrone-Filardi P, Cosentino F, Esposito K. Primary versus secondary cardiorenal prevention in type 2 diabetes: which newer anti-hyperglycaemic drug matters? Diab Obes Metab. 2020;22(2):149–57.
7.
go back to reference Gorgojo-Martinez JJ. New glucose-lowering drugs for reducing cardiovascular risk in patients with type2 diabetes mellitus. Hipertension y Riesgo Vascular. 2019;36(3):145–61.PubMed Gorgojo-Martinez JJ. New glucose-lowering drugs for reducing cardiovascular risk in patients with type2 diabetes mellitus. Hipertension y Riesgo Vascular. 2019;36(3):145–61.PubMed
8.
go back to reference Hussein H, Zaccardi F, Khunti K, Davies MJ, Patsko E, Dhalwani NN, Kloecker DE, Ioannidou E, Gray LJ. Efficacy and tolerability of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists: A systematic review and network meta-analysis. Diab Obes Metab. 2020. https://doi.org/10.1111/dom.14008.CrossRef Hussein H, Zaccardi F, Khunti K, Davies MJ, Patsko E, Dhalwani NN, Kloecker DE, Ioannidou E, Gray LJ. Efficacy and tolerability of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists: A systematic review and network meta-analysis. Diab Obes Metab. 2020. https://​doi.​org/​10.​1111/​dom.​14008.CrossRef
9.
go back to reference Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: jACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(4):422–34.PubMed Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: jACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(4):422–34.PubMed
10.
go back to reference Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease? Curr Opin Nephrol Hypertens. 2017;26(5):358–67.PubMed Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease? Curr Opin Nephrol Hypertens. 2017;26(5):358–67.PubMed
11.
go back to reference Nincevic V, OmanovicKolaric T, Roguljic H, Kizivat T, Smolic M, BilicCurcic I. Renal benefits of SGLT 2 inhibitors and GLP-1 receptor agonists: evidence supporting a paradigm shift in the medical management of type 2 diabetes. Int J Molr Sci. 2019;20(23):5831. Nincevic V, OmanovicKolaric T, Roguljic H, Kizivat T, Smolic M, BilicCurcic I. Renal benefits of SGLT 2 inhibitors and GLP-1 receptor agonists: evidence supporting a paradigm shift in the medical management of type 2 diabetes. Int J Molr Sci. 2019;20(23):5831.
12.
go back to reference Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diab Obes Metab. 2020;22(1):16–29. Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diab Obes Metab. 2020;22(1):16–29.
13.
go back to reference Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diab Metab Res Rev. 2005;21(1):31–8. Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diab Metab Res Rev. 2005;21(1):31–8.
14.
go back to reference Jung CH, Jang JE, Park JY. A novel therapeutic agent for Type 2 diabetes mellitus: sGLT2 inhibitor. Diab Metab J. 2014;38(4):261–73. Jung CH, Jang JE, Park JY. A novel therapeutic agent for Type 2 diabetes mellitus: sGLT2 inhibitor. Diab Metab J. 2014;38(4):261–73.
16.
go back to reference Cefalo CMA, Cinti F, Moffa S, Impronta F, Sorice GP, Mezza T, Pontecorvi A, Giaccari A. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovascu Diabetol. 2019;18(1):20. Cefalo CMA, Cinti F, Moffa S, Impronta F, Sorice GP, Mezza T, Pontecorvi A, Giaccari A. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovascu Diabetol. 2019;18(1):20.
17.
go back to reference Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British J Nutri. 2003;89(1):3–9. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British J Nutri. 2003;89(1):3–9.
18.
go back to reference Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007;261(1):32–43.PubMed Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007;261(1):32–43.PubMed
19.
go back to reference Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34(2–3):183–96.PubMed Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34(2–3):183–96.PubMed
20.
go back to reference Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, Brodehl J, Daschner M, Ehrich JH, Kemper M, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14(11):2873–82.PubMed Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, Brodehl J, Daschner M, Ehrich JH, Kemper M, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14(11):2873–82.PubMed
21.
go back to reference Calado J, Loeffler J, Sakallioglu O, Gok F, Lhotta K, Barata J, Rueff J. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting. Kidney Int. 2006;69(5):852–5.PubMed Calado J, Loeffler J, Sakallioglu O, Gok F, Lhotta K, Barata J, Rueff J. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting. Kidney Int. 2006;69(5):852–5.PubMed
22.
go back to reference Calado J, Sznajer Y, Metzger D, Rita A, Hogan MC, Kattamis A, Scharf M, Tasic V, Greil J, Brinkert F, et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol Dial Transplant. 2008;23(12):3874–9.PubMed Calado J, Sznajer Y, Metzger D, Rita A, Hogan MC, Kattamis A, Scharf M, Tasic V, Greil J, Brinkert F, et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol Dial Transplant. 2008;23(12):3874–9.PubMed
23.
go back to reference Alicic RZ, Neumiller JJ, Johnson EJ, Dieter B, Tuttle KR. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes. 2019;68(2):248–57.PubMed Alicic RZ, Neumiller JJ, Johnson EJ, Dieter B, Tuttle KR. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes. 2019;68(2):248–57.PubMed
24.
go back to reference Pirklbauer M, Schupart R, Fuchs L, Staudinger P, Corazza U, Sallaberger S, Leierer J, Mayer G, Schramek H. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am J Physiol Renal Physiol. 2019;316(3):F449–f462.PubMed Pirklbauer M, Schupart R, Fuchs L, Staudinger P, Corazza U, Sallaberger S, Leierer J, Mayer G, Schramek H. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am J Physiol Renal Physiol. 2019;316(3):F449–f462.PubMed
25.
go back to reference Kaneto H, Obata A, Kimura T, Shimoda M, Okauchi S, Shimo N, Matsuoka TA, Kaku K. Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic beta-cell function and reduction of insulin resistance. J Diab. 2017;9(3):219–25. Kaneto H, Obata A, Kimura T, Shimoda M, Okauchi S, Shimo N, Matsuoka TA, Kaku K. Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic beta-cell function and reduction of insulin resistance. J Diab. 2017;9(3):219–25.
26.
go back to reference Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thevenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512–7.PubMed Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thevenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512–7.PubMed
27.
go back to reference Sargent J. Therapy: SGLT2 inhibitor dapagliflozin promotes glucagon secretion in alpha islet cells. Nat Rev Endocrinol. 2015;11(7):382.PubMed Sargent J. Therapy: SGLT2 inhibitor dapagliflozin promotes glucagon secretion in alpha islet cells. Nat Rev Endocrinol. 2015;11(7):382.PubMed
28.
go back to reference Liu Z, Fu C, Wang W, Xu B. Prevalence of chronic complications of type 2 diabetes mellitus in outpatients–a cross-sectional hospital based survey in urban China. Health Quality Life Outcomes. 2010;8:62. Liu Z, Fu C, Wang W, Xu B. Prevalence of chronic complications of type 2 diabetes mellitus in outpatients–a cross-sectional hospital based survey in urban China. Health Quality Life Outcomes. 2010;8:62.
29.
go back to reference Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.PubMed Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.PubMed
30.
go back to reference Zhang HBXH, Yang YZ, et al. An analysis of the correlation between tumors and death caused of diabetic inpatients in 15 provinces from 1991 to 2005. Chin J Diabetes. 2009;17(1):6–8. Zhang HBXH, Yang YZ, et al. An analysis of the correlation between tumors and death caused of diabetic inpatients in 15 provinces from 1991 to 2005. Chin J Diabetes. 2009;17(1):6–8.
31.
go back to reference Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMed Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMed
32.
go back to reference Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMed Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMed
33.
go back to reference Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMed Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMed
34.
go back to reference McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.PubMed McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.PubMed
36.
go back to reference Sezai A, Sekino H, Unosawa S, Taoka M, Osaka S, Tanaka M. Canagliflozin for Japanese patients with chronic heart failure and type II diabetes. Cardiovascu Diabetol. 2019;18(1):76. Sezai A, Sekino H, Unosawa S, Taoka M, Osaka S, Tanaka M. Canagliflozin for Japanese patients with chronic heart failure and type II diabetes. Cardiovascu Diabetol. 2019;18(1):76.
37.
go back to reference Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA. 2020;323(14):1353–68. Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA. 2020;323(14):1353–68.
38.
go back to reference Bonora BM, de Kreutzenberg SV, Avogaro A, Fadini GP. Effects of the SGLT2 inhibitor dapagliflozin. Cardiovascu Diabetol. 2019;18(1):106. Bonora BM, de Kreutzenberg SV, Avogaro A, Fadini GP. Effects of the SGLT2 inhibitor dapagliflozin. Cardiovascu Diabetol. 2019;18(1):106.
39.
go back to reference Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):1376–414.PubMed Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):1376–414.PubMed
40.
go back to reference Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 Inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME Study. Diab Care. 2016;39(5):717–25. Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 Inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME Study. Diab Care. 2016;39(5):717–25.
41.
go back to reference Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17.PubMed Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17.PubMed
42.
go back to reference Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71(5):471–6.PubMed Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71(5):471–6.PubMed
43.
go back to reference Shrikrishnapalasuriyar N, Shaikh A, Ruslan AM, Sharaf G, Udiawar M, Price DE, Stephens JW. Dapagliflozin is associated with improved glycaemic control and weight reduction at 44 months of follow-up in a secondary care diabetes clinic in the UK. Diab Metab Syndrome. 2020;14(3):237–9. Shrikrishnapalasuriyar N, Shaikh A, Ruslan AM, Sharaf G, Udiawar M, Price DE, Stephens JW. Dapagliflozin is associated with improved glycaemic control and weight reduction at 44 months of follow-up in a secondary care diabetes clinic in the UK. Diab Metab Syndrome. 2020;14(3):237–9.
44.
go back to reference Gilbert RE, Connelly KA. Reduction in the incidence of myocardial infarction with sodium-glucose linked cotransporter-2 inhibitors: evident and plausible. Cardiovas Diabetol. 2019;18(1):6. Gilbert RE, Connelly KA. Reduction in the incidence of myocardial infarction with sodium-glucose linked cotransporter-2 inhibitors: evident and plausible. Cardiovas Diabetol. 2019;18(1):6.
45.
go back to reference Coleman RL, Gray AM, Broedl UC, Fitchett D, George JT, Woerle HJ, Zinman B, Holman RR. Can the cardiovascular risk reductions observed with empagliflozin in the EMPA-REG OUTCOME trial be explained by concomitant changes seen in conventional cardiovascular risk factor levels. Diab Obes Metab. 2020. https://doi.org/10.1111/dom.14017.CrossRef Coleman RL, Gray AM, Broedl UC, Fitchett D, George JT, Woerle HJ, Zinman B, Holman RR. Can the cardiovascular risk reductions observed with empagliflozin in the EMPA-REG OUTCOME trial be explained by concomitant changes seen in conventional cardiovascular risk factor levels. Diab Obes Metab. 2020. https://​doi.​org/​10.​1111/​dom.​14017.CrossRef
46.
go back to reference Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diab Obes Metab. 2018;20(3):479–87. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diab Obes Metab. 2018;20(3):479–87.
47.
go back to reference Yaribeygi H, Lhaf F, Sathyapalan T, Sahebkar A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: implications for lowering tissue damage. Life Sci. 2019;231:116538.PubMed Yaribeygi H, Lhaf F, Sathyapalan T, Sahebkar A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: implications for lowering tissue damage. Life Sci. 2019;231:116538.PubMed
48.
go back to reference Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biol Med. 2017;104:298–310. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biol Med. 2017;104:298–310.
49.
go back to reference Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovascu Diabetol. 2019;18(1):15. Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovascu Diabetol. 2019;18(1):15.
50.
go back to reference Sun HY, Wang NP, Halkos ME, Kerendi F, Kin H, Wang RX, Guyton RA, Zhao ZQ. Involvement of Na +/H + exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol. 2004;486(2):121–31.PubMed Sun HY, Wang NP, Halkos ME, Kerendi F, Kin H, Wang RX, Guyton RA, Zhao ZQ. Involvement of Na +/H + exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol. 2004;486(2):121–31.PubMed
51.
go back to reference Cingolani HE, Rebolledo OR, Portiansky EL, Perez NG, de CamilionHurtado MC. Regression of hypertensive myocardial fibrosis by Na(+)/H(+) exchange inhibition. Hypertension. 2003;41(2):373–7 (Dallas, Tex : 1979).PubMed Cingolani HE, Rebolledo OR, Portiansky EL, Perez NG, de CamilionHurtado MC. Regression of hypertensive myocardial fibrosis by Na(+)/H(+) exchange inhibition. Hypertension. 2003;41(2):373–7 (Dallas, Tex : 1979).PubMed
52.
go back to reference Young M, Funder J. Mineralocorticoid action and sodium-hydrogen exchange: studies in experimental cardiac fibrosis. Endocrinology. 2003;144(9):3848–51.PubMed Young M, Funder J. Mineralocorticoid action and sodium-hydrogen exchange: studies in experimental cardiac fibrosis. Endocrinology. 2003;144(9):3848–51.PubMed
53.
go back to reference Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 2005;288(5):H2031–41.PubMed Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 2005;288(5):H2031–41.PubMed
54.
go back to reference Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22(6):889–902.PubMed Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22(6):889–902.PubMed
55.
go back to reference Hussein AM, Eid EA, Taha M, Elshazli RM, Bedir RF, Lashin LS. Comparative study of the effects of GLP1 analog and SGLT2 inhibitor against diabetic cardiomyopathy in Type 2 diabetic rats: possible underlying mechanisms. Biomedicines. 2020;8(3):43.PubMedCentral Hussein AM, Eid EA, Taha M, Elshazli RM, Bedir RF, Lashin LS. Comparative study of the effects of GLP1 analog and SGLT2 inhibitor against diabetic cardiomyopathy in Type 2 diabetic rats: possible underlying mechanisms. Biomedicines. 2020;8(3):43.PubMedCentral
56.
go back to reference Yang Y, Zhao C, Ye Y, Yu M, Qu X. Prospect of sodium-glucose co-transporter 2 inhibitors combined with insulin for the treatment of type 2 diabetes. Front Endocrinol. 2020;11:190. Yang Y, Zhao C, Ye Y, Yu M, Qu X. Prospect of sodium-glucose co-transporter 2 inhibitors combined with insulin for the treatment of type 2 diabetes. Front Endocrinol. 2020;11:190.
58.
go back to reference Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6):e004007.PubMedPubMedCentral Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6):e004007.PubMedPubMedCentral
59.
go back to reference Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, Carbone S, Abbate A, Dixon DL: Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. Journal of the American Heart Association 2017, 6(5). Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, Carbone S, Abbate A, Dixon DL: Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. Journal of the American Heart Association 2017, 6(5).
60.
go back to reference Reutens AT, Atkins RC. Epidemiology of diabetic nephropathy. Contrib Nephrol. 2011;170:1–7.PubMed Reutens AT, Atkins RC. Epidemiology of diabetic nephropathy. Contrib Nephrol. 2011;170:1–7.PubMed
61.
go back to reference Yang G, Zhang M, Zhang M, Chen S, Chen P. Effect of Huangshukuihua (Flos Abelmoschi Manihot) on diabetic nephropathy: a meta-analysis. J Trad Chin Med = Chung i tsa chih ying wen pan. 2015;35(1):15–20. Yang G, Zhang M, Zhang M, Chen S, Chen P. Effect of Huangshukuihua (Flos Abelmoschi Manihot) on diabetic nephropathy: a meta-analysis. J Trad Chin Med = Chung i tsa chih ying wen pan. 2015;35(1):15–20.
62.
go back to reference Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.PubMed Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.PubMed
63.
go back to reference Chamberlain JJ, Doyle-Delgado K, Peterson L, Skolnik N. Diabetes Technology: review of the 2019 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2019;171(6):415–20.PubMed Chamberlain JJ, Doyle-Delgado K, Peterson L, Skolnik N. Diabetes Technology: review of the 2019 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2019;171(6):415–20.PubMed
64.
go back to reference Association TMCGoCD. Chinese clinical practice guideline of diabetic kidney disease. Chin J Diab Mellitus. 2019;11(1):15–28. Association TMCGoCD. Chinese clinical practice guideline of diabetic kidney disease. Chin J Diab Mellitus. 2019;11(1):15–28.
65.
go back to reference Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence. Postgrad Med. 2019;131(4):251–60.PubMed Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence. Postgrad Med. 2019;131(4):251–60.PubMed
66.
go back to reference Garofalo C, Borrelli S, Liberti ME, Andreucci M, Conte G, Minutolo R, Provenzano M, De Nicola L. SGLT2 inhibitors: nephroprotective efficacy and side effects. Medicina. 2019;55(6):268.PubMedCentral Garofalo C, Borrelli S, Liberti ME, Andreucci M, Conte G, Minutolo R, Provenzano M, De Nicola L. SGLT2 inhibitors: nephroprotective efficacy and side effects. Medicina. 2019;55(6):268.PubMedCentral
67.
go back to reference Kinguchi S, Wakui H, Ito Y, Kondo Y, Azushima K, Osada U, Yamakawa T, Iwamoto T, Yutoh J, Misumi T, et al. Improved home BP profile with dapagliflozin is associated with amelioration of albuminuria in Japanese patients with diabetic nephropathy: the Yokohama add-on inhibitory efficacy of dapagliflozin on albuminuria in Japanese patients with type 2 diabetes study (Y-AIDA study). Cardiovascu Diabetol. 2019;18(1):110. Kinguchi S, Wakui H, Ito Y, Kondo Y, Azushima K, Osada U, Yamakawa T, Iwamoto T, Yutoh J, Misumi T, et al. Improved home BP profile with dapagliflozin is associated with amelioration of albuminuria in Japanese patients with diabetic nephropathy: the Yokohama add-on inhibitory efficacy of dapagliflozin on albuminuria in Japanese patients with type 2 diabetes study (Y-AIDA study). Cardiovascu Diabetol. 2019;18(1):110.
68.
go back to reference Fishman B, Shlomai G, Twig G, Derazne E, Tenenbaum A, Fisman EZ, Leiba A, Grossman E. Grossman E: Renal glucosuria is associated with lower body weight and lower rates of elevated systolic blood pressure: results of a nationwide cross-sectional study of 2.5 million adolescents. Cardiovascu Diabetol. 2019;18(1):124. Fishman B, Shlomai G, Twig G, Derazne E, Tenenbaum A, Fisman EZ, Leiba A, Grossman E. Grossman E: Renal glucosuria is associated with lower body weight and lower rates of elevated systolic blood pressure: results of a nationwide cross-sectional study of 2.5 million adolescents. Cardiovascu Diabetol. 2019;18(1):124.
69.
go back to reference Kohan DE, Fioretto P, Johnsson K, Parikh S, Ptaszynska A, Ying L. The effect of dapagliflozin on renal function in patients with type 2 diabetes. J Nephrol. 2016;29(3):391–400.PubMed Kohan DE, Fioretto P, Johnsson K, Parikh S, Ptaszynska A, Ying L. The effect of dapagliflozin on renal function in patients with type 2 diabetes. J Nephrol. 2016;29(3):391–400.PubMed
70.
go back to reference Perkovic V, Jardine M, Vijapurkar U, Meininger G. Renal effects of canagliflozin in type 2 diabetes mellitus. Curr Med Res Opin. 2015;31(12):2219–31.PubMed Perkovic V, Jardine M, Vijapurkar U, Meininger G. Renal effects of canagliflozin in type 2 diabetes mellitus. Curr Med Res Opin. 2015;31(12):2219–31.PubMed
71.
go back to reference Ji LNGL, Guo XH, Hong TP, Huo Y, Ji QH, Kuang HY, Li H, Li Q, Li Y, Lam KS, Lu JM, Mu YM, Dan ZY, Tong NW, Wang WQ, Yang WY, Zhou ZG, Zhu DL, Zou DJ. Expert guidance on clinical practice of sodium glucose co-transporter 2 inhibitor in China. Chin J Diab. 2016;24(10):865–70. Ji LNGL, Guo XH, Hong TP, Huo Y, Ji QH, Kuang HY, Li H, Li Q, Li Y, Lam KS, Lu JM, Mu YM, Dan ZY, Tong NW, Wang WQ, Yang WY, Zhou ZG, Zhu DL, Zou DJ. Expert guidance on clinical practice of sodium glucose co-transporter 2 inhibitor in China. Chin J Diab. 2016;24(10):865–70.
72.
go back to reference Wilding J. SGLT2 inhibitors and urinary tract infections. Nat Rev Endocrinol. 2019;15(12):687–8.PubMed Wilding J. SGLT2 inhibitors and urinary tract infections. Nat Rev Endocrinol. 2019;15(12):687–8.PubMed
73.
go back to reference Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diab Care. 2015;38(9):1687–93. Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diab Care. 2015;38(9):1687–93.
74.
go back to reference Levine JA, Karam SL, Aleppo G. SGLT2-I in the Hospital Setting: diabetic Ketoacidosis and other benefits and concerns. Curr Diab Rep. 2017;17(7):54.PubMed Levine JA, Karam SL, Aleppo G. SGLT2-I in the Hospital Setting: diabetic Ketoacidosis and other benefits and concerns. Curr Diab Rep. 2017;17(7):54.PubMed
75.
go back to reference Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diab Metab Res Rev. 2017;33(5):e2886. Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diab Metab Res Rev. 2017;33(5):e2886.
76.
go back to reference Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk. Front Pharmacol. 2018;9:1517.PubMed Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk. Front Pharmacol. 2018;9:1517.PubMed
77.
go back to reference Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diab Care. 2018;41(1):e4–5. Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diab Care. 2018;41(1):e4–5.
78.
go back to reference Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J. 2019;380(24):2295–306. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J. 2019;380(24):2295–306.
79.
go back to reference Li D, Yang JY, Wang T, Shen S, Tang H. Risks of diabetic foot syndrome and amputation associated with sodium glucose co-transporter 2 inhibitors: a meta-analysis of randomized controlled trials. Diab Metab. 2018;44(5):410–4. Li D, Yang JY, Wang T, Shen S, Tang H. Risks of diabetic foot syndrome and amputation associated with sodium glucose co-transporter 2 inhibitors: a meta-analysis of randomized controlled trials. Diab Metab. 2018;44(5):410–4.
80.
go back to reference De Jonghe S, Johnson MD, Mamidi R, Vinken P, Feyen B, Lammens G, Proctor J. Renal tubular and adrenal medullary tumors in the 2-year rat study with canagliflozin confirmed to be secondary to carbohydrate (glucose) malabsorption in the 15-month mechanistic rat study. Chem Biol Interact. 2017;277:85–90.PubMed De Jonghe S, Johnson MD, Mamidi R, Vinken P, Feyen B, Lammens G, Proctor J. Renal tubular and adrenal medullary tumors in the 2-year rat study with canagliflozin confirmed to be secondary to carbohydrate (glucose) malabsorption in the 15-month mechanistic rat study. Chem Biol Interact. 2017;277:85–90.PubMed
81.
go back to reference De Jonghe S, Proctor J, Vinken P, Feyen B, Wynant I, Marien D, Geys H, Mamidi RN, Johnson MD. Carcinogenicity in rats of the SGLT2 inhibitor canagliflozin. Chem Biol Interact. 2014;224:1–12.PubMed De Jonghe S, Proctor J, Vinken P, Feyen B, Wynant I, Marien D, Geys H, Mamidi RN, Johnson MD. Carcinogenicity in rats of the SGLT2 inhibitor canagliflozin. Chem Biol Interact. 2014;224:1–12.PubMed
83.
go back to reference Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors. Diab Obes Metab. 2019;21(Suppl 2):34–42. Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors. Diab Obes Metab. 2019;21(Suppl 2):34–42.
84.
go back to reference Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72–82.PubMed Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72–82.PubMed
Metadata
Title
SGLT2i: beyond the glucose-lowering effect
Authors
Lihua Ni
Cheng Yuan
Guopeng Chen
Changjiang Zhang
Xiaoyan Wu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2020
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-020-01071-y

Other articles of this Issue 1/2020

Cardiovascular Diabetology 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine