Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

Authors: Khalid A Mohamedali, Sophia Ran, Candelaria Gomez-Manzano, Latha Ramdas, Jing Xu, Sehoon Kim, Lawrence H Cheung, Walter N Hittelman, Wei Zhang, Johannes Waltenberger, Philip E Thorpe, Michael G Rosenblum

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo.

Methods

We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis.

Results

Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM) and PAE/VEGFR-1 (100 nM) cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response.

Conclusions

Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2-overexpressing endothelial cells and represent the first analysis of genes governing intoxication of mammalian endothelial cells by a gelonin-based targeted therapeutic agent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siemann DW, Horsman MR: Vascular targeted therapies in oncology. Cell Tissue Res. 2009, 335: 241-248. 10.1007/s00441-008-0646-0.CrossRefPubMed Siemann DW, Horsman MR: Vascular targeted therapies in oncology. Cell Tissue Res. 2009, 335: 241-248. 10.1007/s00441-008-0646-0.CrossRefPubMed
2.
go back to reference Bernatchez PN, Rollin S, Soker S, Sirois MG: Relative effects of VEGF-A and VEGF-C on endothelial cell proliferation, migration and PAF synthesis: Role of neuropilin-1. J Cell Biochem. 2002, 85: 629-639. 10.1002/jcb.10155.CrossRefPubMed Bernatchez PN, Rollin S, Soker S, Sirois MG: Relative effects of VEGF-A and VEGF-C on endothelial cell proliferation, migration and PAF synthesis: Role of neuropilin-1. J Cell Biochem. 2002, 85: 629-639. 10.1002/jcb.10155.CrossRefPubMed
3.
go back to reference Han YS, Lee JE, Jung JW, Lee JS: Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009, 247: 541-548. 10.1007/s00417-008-0976-3.CrossRefPubMed Han YS, Lee JE, Jung JW, Lee JS: Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009, 247: 541-548. 10.1007/s00417-008-0976-3.CrossRefPubMed
4.
go back to reference Karamysheva AF: Mechanisms of angiogenesis. Biochemistry (Mosc). 2008, 73: 751-762. 10.1134/S0006297908070031.CrossRef Karamysheva AF: Mechanisms of angiogenesis. Biochemistry (Mosc). 2008, 73: 751-762. 10.1134/S0006297908070031.CrossRef
5.
go back to reference Pourgholami MH, Morris DL: Inhibitors of vascular endothelial growth factor in cancer. Cardiovasc Hematol Agents Med Chem. 2008, 6: 343-347. 10.2174/187152508785909528.CrossRefPubMed Pourgholami MH, Morris DL: Inhibitors of vascular endothelial growth factor in cancer. Cardiovasc Hematol Agents Med Chem. 2008, 6: 343-347. 10.2174/187152508785909528.CrossRefPubMed
6.
go back to reference Zeng H, Dvorak HF, Mukhopadhyay D: Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 2001, 276: 26969-26979. 10.1074/jbc.M103213200.CrossRefPubMed Zeng H, Dvorak HF, Mukhopadhyay D: Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 2001, 276: 26969-26979. 10.1074/jbc.M103213200.CrossRefPubMed
7.
go back to reference Crawford Y, Ferrara N: VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 2009, 335: 261-269. 10.1007/s00441-008-0675-8.CrossRefPubMed Crawford Y, Ferrara N: VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 2009, 335: 261-269. 10.1007/s00441-008-0675-8.CrossRefPubMed
8.
go back to reference Dvorak HF: VPF/VEGF and the angiogenic response. Semin Perinatol. 2000, 24: 75-78. 10.1016/S0146-0005(00)80061-0.CrossRefPubMed Dvorak HF: VPF/VEGF and the angiogenic response. Semin Perinatol. 2000, 24: 75-78. 10.1016/S0146-0005(00)80061-0.CrossRefPubMed
9.
go back to reference Mohamedali KA, Kedar D, Sweeney P, Kamat A, Davis DW, Eve BY, Huang S, Thorpe PE, Dinney CP, Rosenblum MG: The vascular-targeting fusion toxin VEGF121/rGel inhibits the growth of orthotopic human bladder carcinoma tumors. Neoplasia. 2005, 7: 912-920. 10.1593/neo.05292.CrossRefPubMedPubMedCentral Mohamedali KA, Kedar D, Sweeney P, Kamat A, Davis DW, Eve BY, Huang S, Thorpe PE, Dinney CP, Rosenblum MG: The vascular-targeting fusion toxin VEGF121/rGel inhibits the growth of orthotopic human bladder carcinoma tumors. Neoplasia. 2005, 7: 912-920. 10.1593/neo.05292.CrossRefPubMedPubMedCentral
10.
go back to reference Veenendaal LM, Jin H, Ran S, Cheung L, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG: In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci USA. 2002, 99: 7866-7871. 10.1073/pnas.122157899.CrossRefPubMedPubMedCentral Veenendaal LM, Jin H, Ran S, Cheung L, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG: In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci USA. 2002, 99: 7866-7871. 10.1073/pnas.122157899.CrossRefPubMedPubMedCentral
11.
go back to reference Ran S, Mohamedali KA, Luster TA, Thorpe PE, Rosenblum MG: The vascular-ablative agent VEGF(121)/rGel inhibits pulmonary metastases of MDA-MB-231 breast tumors. Neoplasia. 2005, 7: 486-496. 10.1593/neo.04631.CrossRefPubMedPubMedCentral Ran S, Mohamedali KA, Luster TA, Thorpe PE, Rosenblum MG: The vascular-ablative agent VEGF(121)/rGel inhibits pulmonary metastases of MDA-MB-231 breast tumors. Neoplasia. 2005, 7: 486-496. 10.1593/neo.04631.CrossRefPubMedPubMedCentral
12.
go back to reference Mohamedali KA, Poblenz AT, Sikes CR, Navone NM, Thorpe PE, Darnay BG, Rosenblum MG: Inhibition of prostate tumor growth and bone remodeling by the vascular targeting agent VEGF121/rGel. Cancer Res. 2006, 66: 10919-10928. 10.1158/0008-5472.CAN-06-0459.CrossRefPubMed Mohamedali KA, Poblenz AT, Sikes CR, Navone NM, Thorpe PE, Darnay BG, Rosenblum MG: Inhibition of prostate tumor growth and bone remodeling by the vascular targeting agent VEGF121/rGel. Cancer Res. 2006, 66: 10919-10928. 10.1158/0008-5472.CAN-06-0459.CrossRefPubMed
13.
go back to reference Mohamedali KA, Li ZG, Starbuck MW, Wan X, Yang J, Kim S, Zhang W, Rosenblum MG, Navone N: Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature. Clin Cancer Res. 2011 Mohamedali KA, Li ZG, Starbuck MW, Wan X, Yang J, Kim S, Zhang W, Rosenblum MG, Navone N: Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature. Clin Cancer Res. 2011
14.
go back to reference Akiyama H, Mohamedali KA, RL ES, Kachi S, Shen J, Hatara C, Umeda N, Hackett SF, Aslam S, Krause M, Lai H, Rosenblum MG, Campochiaro PA: Vascular targeting of ocular neovascularization with a vascular endothelial growth factor121/gelonin chimeric protein. Mol Pharmacol. 2005, 68: 1543-1550.PubMed Akiyama H, Mohamedali KA, RL ES, Kachi S, Shen J, Hatara C, Umeda N, Hackett SF, Aslam S, Krause M, Lai H, Rosenblum MG, Campochiaro PA: Vascular targeting of ocular neovascularization with a vascular endothelial growth factor121/gelonin chimeric protein. Mol Pharmacol. 2005, 68: 1543-1550.PubMed
15.
go back to reference Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, Vogel H, Hou LC, Tse V, Rosenblum MG, Chen X: Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med. 2007, 48: 445-454.PubMed Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, Vogel H, Hou LC, Tse V, Rosenblum MG, Chen X: Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med. 2007, 48: 445-454.PubMed
16.
go back to reference Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N: The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem. 1996, 271: 7788-7795. 10.1074/jbc.271.13.7788.CrossRefPubMed Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N: The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem. 1996, 271: 7788-7795. 10.1074/jbc.271.13.7788.CrossRefPubMed
17.
go back to reference Yang S, Toy K, Ingle G, Zlot C, Williams PM, Fuh G, Li B, de Vos A, Gerritsen ME: Vascular endothelial growth factor-induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt-1 receptors. Arterioscler Thromb Vasc Biol. 2002, 22: 1797-1803. 10.1161/01.ATV.0000038995.31179.24.CrossRefPubMed Yang S, Toy K, Ingle G, Zlot C, Williams PM, Fuh G, Li B, de Vos A, Gerritsen ME: Vascular endothelial growth factor-induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt-1 receptors. Arterioscler Thromb Vasc Biol. 2002, 22: 1797-1803. 10.1161/01.ATV.0000038995.31179.24.CrossRefPubMed
18.
go back to reference Kroll J, Waltenberger J: A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochem Biophys Res Commun. 1999, 265: 636-639. 10.1006/bbrc.1999.1729.CrossRefPubMed Kroll J, Waltenberger J: A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochem Biophys Res Commun. 1999, 265: 636-639. 10.1006/bbrc.1999.1729.CrossRefPubMed
19.
go back to reference Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994, 269: 26988-26995.PubMed Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994, 269: 26988-26995.PubMed
20.
go back to reference Kanellopoulos J, Rossi G, Metzger H: Preparative isolation of the cell receptor for immunoglobulin E. J Biol Chem. 1979, 254: 7691-7697.PubMed Kanellopoulos J, Rossi G, Metzger H: Preparative isolation of the cell receptor for immunoglobulin E. J Biol Chem. 1979, 254: 7691-7697.PubMed
21.
go back to reference Ran S, Huang X, Downes A, Thorpe PE: Evaluation of novel antimouse VEGFR2 antibodies as potential antiangiogenic or vascular targeting agents for tumor therapy. Neoplasia. 2003, 5: 297-307.CrossRefPubMedPubMedCentral Ran S, Huang X, Downes A, Thorpe PE: Evaluation of novel antimouse VEGFR2 antibodies as potential antiangiogenic or vascular targeting agents for tumor therapy. Neoplasia. 2003, 5: 297-307.CrossRefPubMedPubMedCentral
22.
go back to reference Brooks PC, Montgomery AM, Cheresh DA: Use of the 10-day-old chick embryo model for studying angiogenesis. Methods Mol Biol. 1999, 129: 257-269.PubMed Brooks PC, Montgomery AM, Cheresh DA: Use of the 10-day-old chick embryo model for studying angiogenesis. Methods Mol Biol. 1999, 129: 257-269.PubMed
23.
go back to reference Jiang BH, Zheng JZ, Aoki M, Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA. 2000, 97: 1749-1753. 10.1073/pnas.040560897.CrossRefPubMedPubMedCentral Jiang BH, Zheng JZ, Aoki M, Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA. 2000, 97: 1749-1753. 10.1073/pnas.040560897.CrossRefPubMedPubMedCentral
24.
go back to reference Verhoef C, de Wilt JH, Verheul HM: Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Curr Pharm Des. 2006, 12: 2623-2630. 10.2174/138161206777698756.CrossRefPubMed Verhoef C, de Wilt JH, Verheul HM: Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Curr Pharm Des. 2006, 12: 2623-2630. 10.2174/138161206777698756.CrossRefPubMed
25.
go back to reference Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003, 111: 1287-1295.CrossRefPubMedPubMedCentral Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003, 111: 1287-1295.CrossRefPubMedPubMedCentral
26.
go back to reference Veronese ML, O'Dwyer PJ: Monoclonal antibodies in the treatment of colorectal cancer. Eur J Cancer. 2004, 40: 1292-1301. 10.1016/j.ejca.2004.02.014.CrossRefPubMed Veronese ML, O'Dwyer PJ: Monoclonal antibodies in the treatment of colorectal cancer. Eur J Cancer. 2004, 40: 1292-1301. 10.1016/j.ejca.2004.02.014.CrossRefPubMed
27.
go back to reference Zondor SD, Medina PJ: Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann Pharmacother. 2004, 38: 1258-1264. 10.1345/aph.1D470.CrossRefPubMed Zondor SD, Medina PJ: Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann Pharmacother. 2004, 38: 1258-1264. 10.1345/aph.1D470.CrossRefPubMed
28.
go back to reference Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS: VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002, 99: 11393-11398. 10.1073/pnas.172398299.CrossRefPubMedPubMedCentral Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS: VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002, 99: 11393-11398. 10.1073/pnas.172398299.CrossRefPubMedPubMedCentral
29.
go back to reference Glade Bender JL, Adamson PC, Reid JM, Xu L, Baruchel S, Shaked Y, Kerbel RS, Cooney-Qualter EM, Stempak D, Chen HX, Nelson MD, Krailo MD, Ingle AM, Blaney SM, Kandel JJ, Yamashiro DJ: Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group Study. J Clin Oncol. 2008, 26: 399-405. 10.1200/JCO.2007.11.9230.CrossRefPubMed Glade Bender JL, Adamson PC, Reid JM, Xu L, Baruchel S, Shaked Y, Kerbel RS, Cooney-Qualter EM, Stempak D, Chen HX, Nelson MD, Krailo MD, Ingle AM, Blaney SM, Kandel JJ, Yamashiro DJ: Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group Study. J Clin Oncol. 2008, 26: 399-405. 10.1200/JCO.2007.11.9230.CrossRefPubMed
30.
go back to reference Ma J, Waxman DJ: Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008, 7: 3670-3684. 10.1158/1535-7163.MCT-08-0715.CrossRefPubMedPubMedCentral Ma J, Waxman DJ: Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008, 7: 3670-3684. 10.1158/1535-7163.MCT-08-0715.CrossRefPubMedPubMedCentral
31.
go back to reference Aoki M, Kanamori M, Yudoh K, Ohmori K, Yasuda T, Kimura T: Effects of vascular endothelial growth factor and E-selectin on angiogenesis in the murine metastatic RCT sarcoma. Tumour Biol. 2001, 22: 239-246. 10.1159/000050622.CrossRefPubMed Aoki M, Kanamori M, Yudoh K, Ohmori K, Yasuda T, Kimura T: Effects of vascular endothelial growth factor and E-selectin on angiogenesis in the murine metastatic RCT sarcoma. Tumour Biol. 2001, 22: 239-246. 10.1159/000050622.CrossRefPubMed
32.
go back to reference Itokawa T, Nokihara H, Nishioka Y, Sone S, Iwamoto Y, Yamada Y, Cherrington J, McMahon G, Shibuya M, Kuwano M, Ono M: Antiangiogenic effect by SU5416 is partly attributable to inhibition of Flt-1 receptor signaling. Mol Cancer Ther. 2002, 1: 295-302.PubMed Itokawa T, Nokihara H, Nishioka Y, Sone S, Iwamoto Y, Yamada Y, Cherrington J, McMahon G, Shibuya M, Kuwano M, Ono M: Antiangiogenic effect by SU5416 is partly attributable to inhibition of Flt-1 receptor signaling. Mol Cancer Ther. 2002, 1: 295-302.PubMed
33.
go back to reference Fakhari M, Pullirsch D, Paya K, Abraham D, Hofbauer R, Aharinejad S: Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma. J Pediatr Surg. 2002, 37: 582-587. 10.1053/jpsu.2002.31614.CrossRefPubMed Fakhari M, Pullirsch D, Paya K, Abraham D, Hofbauer R, Aharinejad S: Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma. J Pediatr Surg. 2002, 37: 582-587. 10.1053/jpsu.2002.31614.CrossRefPubMed
34.
go back to reference Ferrara N, Gerber HP: The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2001, 106: 148-156. 10.1159/000046610.CrossRefPubMed Ferrara N, Gerber HP: The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2001, 106: 148-156. 10.1159/000046610.CrossRefPubMed
35.
go back to reference Nakopoulou L, Stefanaki K, Panayotopoulou E, Giannopoulou I, Athanassiadou P, Gakiopoulou-Givalou H, Louvrou A: Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas: correlation with proliferation. Hum Pathol. 2002, 33: 863-870. 10.1053/hupa.2002.126879.CrossRefPubMed Nakopoulou L, Stefanaki K, Panayotopoulou E, Giannopoulou I, Athanassiadou P, Gakiopoulou-Givalou H, Louvrou A: Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas: correlation with proliferation. Hum Pathol. 2002, 33: 863-870. 10.1053/hupa.2002.126879.CrossRefPubMed
36.
go back to reference Verheul HM, Pinedo HM: The Role of Vascular Endothelial Growth Factor (VEGF) in Tumor Angiogenesis and Early Clinical Development of VEGF-Receptor Kinase Inhibitors. Clin Breast Cancer. 2000, 1 (Suppl 1): S80-S84.CrossRefPubMed Verheul HM, Pinedo HM: The Role of Vascular Endothelial Growth Factor (VEGF) in Tumor Angiogenesis and Early Clinical Development of VEGF-Receptor Kinase Inhibitors. Clin Breast Cancer. 2000, 1 (Suppl 1): S80-S84.CrossRefPubMed
37.
go back to reference Rosenblum MG, Cheung LH, Liu Y, Marks JW: Design, expression, purification, and characterization, in vitro and in vivo, of an antimelanoma single-chain Fv antibody fused to the toxin gelonin. Cancer Res. 2003, 63: 3995-4002.PubMed Rosenblum MG, Cheung LH, Liu Y, Marks JW: Design, expression, purification, and characterization, in vitro and in vivo, of an antimelanoma single-chain Fv antibody fused to the toxin gelonin. Cancer Res. 2003, 63: 3995-4002.PubMed
38.
go back to reference Lyu MA, Cheung LH, Hittelman WN, Marks JW, Aguiar RC, Rosenblum MG: The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther. 2007, 6: 460-470. 10.1158/1535-7163.MCT-06-0254.CrossRefPubMed Lyu MA, Cheung LH, Hittelman WN, Marks JW, Aguiar RC, Rosenblum MG: The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther. 2007, 6: 460-470. 10.1158/1535-7163.MCT-06-0254.CrossRefPubMed
Metadata
Title
Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2
Authors
Khalid A Mohamedali
Sophia Ran
Candelaria Gomez-Manzano
Latha Ramdas
Jing Xu
Sehoon Kim
Lawrence H Cheung
Walter N Hittelman
Wei Zhang
Johannes Waltenberger
Philip E Thorpe
Michael G Rosenblum
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-358

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine