Skip to main content
Top
Published in: Child's Nervous System 7/2005

01-07-2005 | A.J. Raimondi ISPN Award

Cytotoxicity of rat marrow stromal cells against malignant glioma cells

Authors: Seok-Gu Kang, Sin Soo Jeun, Jung Yeon Lim, Do Sung Yoo, Pil Woo Huh, Kyung Souk Cho, Dal Soo Kim, Hyung-Jin Shin, Jong Hyun Kim, Moon Chan Kim, Joon Ki Kang

Published in: Child's Nervous System | Issue 7/2005

Login to get access

Abstract

Objects

Marrow stromal cells (MSCs) have been shown to have the capacity of orthodox and unorthodox plasticity. In this study, the authors tried to access in vitro cytotoxicity of MSCs from rat and also to differentiate MSCs into immune effector cell.

Methods

Rat MSCs (rMSCs) were isolated by standard methodology and were activated by interleukin-2 (IL-2), interleukin-15 (IL-15), granulocyte macrophage colony stimulating factor, and combinations, which were effector cells. Cytotoxicity of rMSCs and activated rMSCs against the target cells (9L rat glioma cell line) was estimated using visual survival cell assay. Phenotypes of these various activated cells were determined using flow cytometry. The secreted protein from effector cells was estimated by enzyme-linked immunosorbent assay. The expression of immune response-related genes in activated cells was measured.

Results

There was a significant cytotoxicity of rMSCs activated with various cytokine combinations. After various cytokine activations of rMSCs, the population of immune effector cells (CD8, CD161a) and immune reaction-related proteins (IL-4, γ-INF) might increase. Apoptosis may be one of the lysis mechanisms of target cells by activated rMSCs. The contributing genes could be γ-INF, FasL, and perforin.

Conclusion

This study suggests that rMSC may be used as adoptive transfer therapy in patients suffering from malignant brain tumor, but we have to investigate orthotopic animal study for the proper translation.
Literature
1.
go back to reference Kalifa C, Valteau D, Pizer B, Vassal G, Grill J, Hartmann O (1999) High-dose chemotherapy in childhood brain tumours. Childs Nerv Syst 15:498–505CrossRefPubMed Kalifa C, Valteau D, Pizer B, Vassal G, Grill J, Hartmann O (1999) High-dose chemotherapy in childhood brain tumours. Childs Nerv Syst 15:498–505CrossRefPubMed
2.
go back to reference Huncharek M, Wheeler L, McGarry R, Geschwind JF (1999) Chemotherapy response rates in recurrent/progressive pediatric glioma; results of a systematic review. Anticancer Res 19:3569–3574 Huncharek M, Wheeler L, McGarry R, Geschwind JF (1999) Chemotherapy response rates in recurrent/progressive pediatric glioma; results of a systematic review. Anticancer Res 19:3569–3574
3.
go back to reference Heideman RL, Kuttesch J Jr, Gajjar AJ, Walter AW, Jenkins JJ, Li Y, Sanford RA, Kun LE (1997) Supratentorial malignant gliomas in childhood: a single institution perspective. Cancer 80:497–504 Heideman RL, Kuttesch J Jr, Gajjar AJ, Walter AW, Jenkins JJ, Li Y, Sanford RA, Kun LE (1997) Supratentorial malignant gliomas in childhood: a single institution perspective. Cancer 80:497–504
4.
go back to reference Wisoff JH, Boyett JM, Berger MS, Brant C, Li H, Yates AJ, McGuire-Cullen P, Turski PA, Sutton LN, Allen JC, Packer RJ, Finlay JL (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89:52–59PubMed Wisoff JH, Boyett JM, Berger MS, Brant C, Li H, Yates AJ, McGuire-Cullen P, Turski PA, Sutton LN, Allen JC, Packer RJ, Finlay JL (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89:52–59PubMed
5.
go back to reference Johnson JH Jr, Phillips PC (1996) Malignant gliomas in children. Cancer Investig 14:609–621 Johnson JH Jr, Phillips PC (1996) Malignant gliomas in children. Cancer Investig 14:609–621
6.
go back to reference Barker FG II, Prados MD, Chang SM, Gutin PH, Lamborn KR, Larson DA, Malec MK, McDermott MW, Sneed PK, Wara WM, Wilson CB (1996) Radiation response and survival time in patients with glioblastoma multiforme. J Neurosurg 84:442–448PubMed Barker FG II, Prados MD, Chang SM, Gutin PH, Lamborn KR, Larson DA, Malec MK, McDermott MW, Sneed PK, Wara WM, Wilson CB (1996) Radiation response and survival time in patients with glioblastoma multiforme. J Neurosurg 84:442–448PubMed
7.
go back to reference Wolff JE, Gnekow AK, Kortmann RD, Pietsch T, Urban C, Graf N, Kuhl J (2002) Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer 94:264–271 Wolff JE, Gnekow AK, Kortmann RD, Pietsch T, Urban C, Graf N, Kuhl J (2002) Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer 94:264–271
8.
go back to reference Parney IF, Hao C, Petruk KC (2000) Glioma immunology and immunotherapy. Neurosurgery 46:778–791; discussion 791–772CrossRefPubMed Parney IF, Hao C, Petruk KC (2000) Glioma immunology and immunotherapy. Neurosurgery 46:778–791; discussion 791–772CrossRefPubMed
9.
go back to reference Sampson JH, Archer GE, Ashley DM, Fuchs HE, Hale LP, Dranoff G, Bigner DD (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci U S A 93:10399–10404CrossRefPubMed Sampson JH, Archer GE, Ashley DM, Fuchs HE, Hale LP, Dranoff G, Bigner DD (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci U S A 93:10399–10404CrossRefPubMed
10.
go back to reference Soling A, Rainov NG (2001) Dendritic cell therapy of primary brain tumors. Mol Med 7:659–667PubMed Soling A, Rainov NG (2001) Dendritic cell therapy of primary brain tumors. Mol Med 7:659–667PubMed
11.
go back to reference Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Hochster HS, Moore EJ, Pierz DM, Chen DK, Budzilovich GN, Ransohoff J (1995) Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76:840–852 Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Hochster HS, Moore EJ, Pierz DM, Chen DK, Budzilovich GN, Ransohoff J (1995) Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76:840–852
12.
go back to reference Tsuboi K, Saijo K, Ishikawa E, Tsurushima H, Takano S, Morishita Y, Ohno T (2003) Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin Cancer Res 9:3294–3302PubMed Tsuboi K, Saijo K, Ishikawa E, Tsurushima H, Takano S, Morishita Y, Ohno T (2003) Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin Cancer Res 9:3294–3302PubMed
13.
go back to reference Tsurushima H, Liu SQ, Tuboi K, Matsumura A, Yoshii Y, Nose T, Saijo K, Ohno T (1999) Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes. Jpn J Cancer Res 90:536–545 Tsurushima H, Liu SQ, Tuboi K, Matsumura A, Yoshii Y, Nose T, Saijo K, Ohno T (1999) Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes. Jpn J Cancer Res 90:536–545
14.
go back to reference Kang SG, Ryu CH, Jeun SS, Park CK, Shin HJ, Kim JH, Kim MC, Kang JK (2004) Lymphokine activated killer cells from umbilical cord blood show higher antitumor effect against anaplastic astrocytoma cell line (U87) and medulloblastoma cell line (TE671) than lymphokine activated killer cells from peripheral blood. Childs Nerv Syst 20:154–162CrossRefPubMed Kang SG, Ryu CH, Jeun SS, Park CK, Shin HJ, Kim JH, Kim MC, Kang JK (2004) Lymphokine activated killer cells from umbilical cord blood show higher antitumor effect against anaplastic astrocytoma cell line (U87) and medulloblastoma cell line (TE671) than lymphokine activated killer cells from peripheral blood. Childs Nerv Syst 20:154–162CrossRefPubMed
15.
go back to reference Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897PubMed Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897PubMed
16.
go back to reference Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85:622–632PubMed Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85:622–632PubMed
17.
go back to reference Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T (2000) Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356:802–807CrossRefPubMed Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T (2000) Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356:802–807CrossRefPubMed
18.
go back to reference Shi M, Zhang B, Tang ZR, Lei ZY, Wang HF, Feng YY, Fan ZP, Xu DP, Wang FS (2004) Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma. World J Gastroenterol 10:1146–1151PubMed Shi M, Zhang B, Tang ZR, Lei ZY, Wang HF, Feng YY, Fan ZP, Xu DP, Wang FS (2004) Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma. World J Gastroenterol 10:1146–1151PubMed
19.
go back to reference Nagaraj S, Ziske C, Schmidt-Wolf IG (2004) Human cytokine-induced killer cells have enhanced in vitro cytolytic activity via non-viral interleukin-2 gene transfer. Genet Vaccines Ther 2:12CrossRefPubMed Nagaraj S, Ziske C, Schmidt-Wolf IG (2004) Human cytokine-induced killer cells have enhanced in vitro cytolytic activity via non-viral interleukin-2 gene transfer. Genet Vaccines Ther 2:12CrossRefPubMed
20.
go back to reference Schmidt-Wolf GD, Negrin RS, Schmidt-Wolf IG (1997) Activated T cells and cytokine-induced CD3+CD56+ killer cells. Ann Hematol 74:51–56CrossRefPubMed Schmidt-Wolf GD, Negrin RS, Schmidt-Wolf IG (1997) Activated T cells and cytokine-induced CD3+CD56+ killer cells. Ann Hematol 74:51–56CrossRefPubMed
21.
go back to reference Linn YC, Hui KM (2003) Cytokine-induced killer cells: NK-like T cells with cytotolytic specificity against leukemia. Leuk Lymphoma 44:1457–1462CrossRefPubMed Linn YC, Hui KM (2003) Cytokine-induced killer cells: NK-like T cells with cytotolytic specificity against leukemia. Leuk Lymphoma 44:1457–1462CrossRefPubMed
22.
go back to reference Wang FS, Liu MX, Zhang B, Shi M, Lei ZY, Sun WB, Du QY, Chen JM (2002) Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J Gastroenterol 8:464–468PubMed Wang FS, Liu MX, Zhang B, Shi M, Lei ZY, Sun WB, Du QY, Chen JM (2002) Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J Gastroenterol 8:464–468PubMed
23.
go back to reference Linn YC, Lau LC, Hui KM (2002) Generation of cytokine-induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. Br J Haematol 116:78–86CrossRefPubMed Linn YC, Lau LC, Hui KM (2002) Generation of cytokine-induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. Br J Haematol 116:78–86CrossRefPubMed
24.
go back to reference Morse MA, Clay TM, Lyerly HK (2002) Current status of adoptive immunotherapy of malignancies. Expert Opin Biol Ther 2:237–247CrossRefPubMed Morse MA, Clay TM, Lyerly HK (2002) Current status of adoptive immunotherapy of malignancies. Expert Opin Biol Ther 2:237–247CrossRefPubMed
25.
go back to reference Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG, Christensson B, Dilber MS (2001) A new method for in vitro expansion of cytotoxic human CD3–CD56+ natural killer cells. Hum Immunol 62:1092–1098CrossRefPubMed Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG, Christensson B, Dilber MS (2001) A new method for in vitro expansion of cytotoxic human CD3–CD56+ natural killer cells. Hum Immunol 62:1092–1098CrossRefPubMed
26.
go back to reference Abbas AK, Lichtman AH, Pober JS (2000) Cellular and molecular immunology, 4th edn. Saunders, Philadelphia Abbas AK, Lichtman AH, Pober JS (2000) Cellular and molecular immunology, 4th edn. Saunders, Philadelphia
27.
go back to reference Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442–1446CrossRefPubMed Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442–1446CrossRefPubMed
28.
go back to reference Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168PubMed Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168PubMed
30.
go back to reference Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359PubMed Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359PubMed
31.
go back to reference Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134CrossRefPubMed Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134CrossRefPubMed
32.
go back to reference Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res, C Embryo Today 69:250–256 Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res, C Embryo Today 69:250–256
33.
go back to reference Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571CrossRefPubMed Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571CrossRefPubMed
34.
go back to reference Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMed Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMed
35.
go back to reference Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66CrossRefPubMed Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66CrossRefPubMed
36.
go back to reference Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349CrossRefPubMed Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349CrossRefPubMed
37.
go back to reference Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefPubMed Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefPubMed
38.
go back to reference Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMed Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMed
39.
go back to reference Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170CrossRefPubMed Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170CrossRefPubMed
40.
go back to reference Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917CrossRefPubMed Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917CrossRefPubMed
41.
go back to reference Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370CrossRefPubMed Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370CrossRefPubMed
42.
go back to reference Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69:880–893CrossRefPubMed Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69:880–893CrossRefPubMed
43.
go back to reference Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95:3908–3913CrossRefPubMed Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95:3908–3913CrossRefPubMed
44.
go back to reference Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779CrossRefPubMed Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779CrossRefPubMed
45.
go back to reference Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377CrossRefPubMed Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377CrossRefPubMed
46.
go back to reference Bianco P, Cossu G (1999) Uno, nessuno e centomila: searching for the identity of mesodermal progenitors. Exp Cell Res 251:257–263CrossRefPubMed Bianco P, Cossu G (1999) Uno, nessuno e centomila: searching for the identity of mesodermal progenitors. Exp Cell Res 251:257–263CrossRefPubMed
47.
go back to reference Anderson DJ, Gage FH, Weissman IL (2001) Can stem cells cross lineage boundaries? Nat Med 7:393–395CrossRefPubMed Anderson DJ, Gage FH, Weissman IL (2001) Can stem cells cross lineage boundaries? Nat Med 7:393–395CrossRefPubMed
48.
go back to reference Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefPubMed Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefPubMed
49.
go back to reference Kumagai N, Fukuda K, Ishimura Y, Nishida T (2000) Synergistic induction of eotaxin expression in human keratocytes by TNF-alpha and IL-4 or IL-13. Investig Ophthalmol Vis Sci 41:1448–1453 Kumagai N, Fukuda K, Ishimura Y, Nishida T (2000) Synergistic induction of eotaxin expression in human keratocytes by TNF-alpha and IL-4 or IL-13. Investig Ophthalmol Vis Sci 41:1448–1453
50.
go back to reference Hombauer H, Minguell JJ (2000) Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer 82:1290–1296CrossRefPubMed Hombauer H, Minguell JJ (2000) Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer 82:1290–1296CrossRefPubMed
51.
go back to reference Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 55:663–667CrossRefPubMed Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 55:663–667CrossRefPubMed
52.
go back to reference Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164CrossRefPubMed Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164CrossRefPubMed
53.
go back to reference Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48CrossRefPubMed Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48CrossRefPubMed
54.
go back to reference Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843CrossRefPubMed Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843CrossRefPubMed
55.
go back to reference Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729CrossRefPubMed Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729CrossRefPubMed
56.
go back to reference Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH (2004) Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 103:1941–1948CrossRefPubMed Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH (2004) Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 103:1941–1948CrossRefPubMed
57.
go back to reference El-Badri NS, Maheshwari A, Sanberg PR (2004) Mesenchymal stem cells in autoimmune disease. Stem Cells Dev 13:463–472CrossRefPubMed El-Badri NS, Maheshwari A, Sanberg PR (2004) Mesenchymal stem cells in autoimmune disease. Stem Cells Dev 13:463–472CrossRefPubMed
58.
go back to reference Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663 Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663
59.
go back to reference Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, Yu JS (2002) Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62:7170–7174 Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, Yu JS (2002) Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62:7170–7174
60.
go back to reference Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97:12846–12851CrossRefPubMed Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97:12846–12851CrossRefPubMed
61.
go back to reference Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608CrossRefPubMed Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608CrossRefPubMed
62.
go back to reference Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608 Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608
63.
go back to reference Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000PubMed Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000PubMed
64.
go back to reference Bhagwati SN (1989) Treatment of glioma with intratumoral instillation of autologous lymphocytes. Childs Nerv Syst 5:38–40CrossRefPubMed Bhagwati SN (1989) Treatment of glioma with intratumoral instillation of autologous lymphocytes. Childs Nerv Syst 5:38–40CrossRefPubMed
65.
go back to reference Hayes RL, Arbit E, Odaimi M, Pannullo S, Scheff R, Kravchinskiy D, Zaroulis C (2001) Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit Rev Oncol/Hematol 39:31–42CrossRef Hayes RL, Arbit E, Odaimi M, Pannullo S, Scheff R, Kravchinskiy D, Zaroulis C (2001) Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit Rev Oncol/Hematol 39:31–42CrossRef
66.
go back to reference Naganuma H, Sasaki A, Satoh E, Nagasaka M, Isoe S, Nakano S, Nukui H (1997) Long-term survival in a young patient with anaplastic glioma. Brain Tumor Pathol 14:71–74PubMed Naganuma H, Sasaki A, Satoh E, Nagasaka M, Isoe S, Nakano S, Nukui H (1997) Long-term survival in a young patient with anaplastic glioma. Brain Tumor Pathol 14:71–74PubMed
67.
go back to reference Yamaguchi T, Suzuki Y, Katakura R, Ebina T, Yokoyama J, Fujimiya Y (1998) Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood gammadeltaT cells isolated from glioblastoma patients. Cancer Immunol Immunother 47:97–103 Yamaguchi T, Suzuki Y, Katakura R, Ebina T, Yokoyama J, Fujimiya Y (1998) Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood gammadeltaT cells isolated from glioblastoma patients. Cancer Immunol Immunother 47:97–103
68.
go back to reference Franzen R, Bouhy D, Schoenen J (2004) Nervous system injury: focus on the inflammatory cytokine ‘granulocyte-macrophage colony stimulating factor’. Neurosci Lett 361:76–78CrossRefPubMed Franzen R, Bouhy D, Schoenen J (2004) Nervous system injury: focus on the inflammatory cytokine ‘granulocyte-macrophage colony stimulating factor’. Neurosci Lett 361:76–78CrossRefPubMed
69.
go back to reference Jean WC, Spellman SR, Wallenfriedman MA, Flores CT, Kurtz BP, Hall WA, Low WC (2004) Effects of combined granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2, and interleukin-12 based immunotherapy against intracranial glioma in the rat. J Neuro-oncol 66:39–49CrossRef Jean WC, Spellman SR, Wallenfriedman MA, Flores CT, Kurtz BP, Hall WA, Low WC (2004) Effects of combined granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2, and interleukin-12 based immunotherapy against intracranial glioma in the rat. J Neuro-oncol 66:39–49CrossRef
70.
go back to reference Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523PubMed Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523PubMed
71.
go back to reference Kimura S, Yoshino A, Katayama Y, Watanabe T, Fukushima T (2002) Growth control of C6 glioma in vivo by nerve growth factor. J Neuro-oncol 59:199–205CrossRef Kimura S, Yoshino A, Katayama Y, Watanabe T, Fukushima T (2002) Growth control of C6 glioma in vivo by nerve growth factor. J Neuro-oncol 59:199–205CrossRef
Metadata
Title
Cytotoxicity of rat marrow stromal cells against malignant glioma cells
Authors
Seok-Gu Kang
Sin Soo Jeun
Jung Yeon Lim
Do Sung Yoo
Pil Woo Huh
Kyung Souk Cho
Dal Soo Kim
Hyung-Jin Shin
Jong Hyun Kim
Moon Chan Kim
Joon Ki Kang
Publication date
01-07-2005
Publisher
Springer-Verlag
Published in
Child's Nervous System / Issue 7/2005
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-005-1216-3

Other articles of this Issue 7/2005

Child's Nervous System 7/2005 Go to the issue

Announcements

July 2005

Cover Picture

Gargoyles