Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 6/2009

01-05-2009 | Original Article

Cytotoxic diarylheptanoid induces cell cycle arrest and apoptosis via increasing ATF3 and stabilizing p53 in SH-SY5Y cells

Authors: Ze Tian, Ning An, Bin Zhou, Peigen Xiao, Isaac S. Kohane, Erxi Wu

Published in: Cancer Chemotherapy and Pharmacology | Issue 6/2009

Login to get access

Abstract

Purpose

The aim of the study is to dissect the cytotoxic mechanisms of 1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)-4E-en-3-heptanone (compound 1) in SH-SY5Y cells and therefore to provide new insight into neuroblastoma chemotherapy.

Methods

Nine diarylheptanoids were isolated from Alpinia officinarum by chromatography and their cytotoxicity was evaluated by an MTS assay. Flow cytometry, BrdU incorporation assay and fluorescence staining were employed to investigate cytostatic and apoptotic effects induced by the compound 1. In addition, Western blot, qPCR and siRNA techniques were used to elucidate the molecular mechanisms of the cytotoxicity.

Results

The study to elucidate the cytotoxic mechanisms of compound 1, the most potent diarylheptanoid showed that cell cycle-related proteins, cyclins, CDKs and CDKIs, as well as two main apoptotic related families, caspase and Bcl 2 were involved in S phase arrest and apoptosis in neuroblastoma cell line SH-SY5Y. Furthermore, following the drug treatment, the protein expression of p53, phospho-p53 (Ser20) as well as the p53 transcriptional activated genes ATF3, puma and Apaf-1 were increased dramatically; MDM2 and Aurora A, the two p53 negative regulators were decreased; the p53 protein stability was enhanced, whereas the p53 mRNA expression level slightly decreased and ATF3 mRNA expression apparently increased. In addition, the knockdown of ATF3 gene by siRNA partially suppressed p53, caspase 3, S phase arrest and apoptosis triggered by compound 1.

Conclusion

These results suggest that compound 1 induces S phase arrest and apoptosis via up regulation of ATF3 and stabilization of p53 in SH-SY5Y cell line. Therefore, compound 1 might be a promising lead structure for neuroblastoma therapy.
Literature
1.
go back to reference An N, Zou ZM, Tian Z, Luo XZ, Yang SL, Xu LZ (2008) Diarylheptanoids from the rhizomes of Alpinia officinarum and their anticancer activity. Fitoterapia 79:27–31PubMedCrossRef An N, Zou ZM, Tian Z, Luo XZ, Yang SL, Xu LZ (2008) Diarylheptanoids from the rhizomes of Alpinia officinarum and their anticancer activity. Fitoterapia 79:27–31PubMedCrossRef
2.
go back to reference Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39PubMedCrossRef Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39PubMedCrossRef
3.
go back to reference Castel V, Grau E, Noguera R, Martinez F (2007) Molecular biology of neuroblastoma. Clin Transl Oncol 9:478–483PubMedCrossRef Castel V, Grau E, Noguera R, Martinez F (2007) Molecular biology of neuroblastoma. Clin Transl Oncol 9:478–483PubMedCrossRef
4.
go back to reference Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96:13777–13782PubMedCrossRef Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96:13777–13782PubMedCrossRef
5.
go back to reference Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27:48–54PubMed Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27:48–54PubMed
6.
go back to reference Chun KS, Keum YS, Han SS, Song YS, Kim SH, Surh YJ (2003) Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24:1515–1524PubMedCrossRef Chun KS, Keum YS, Han SS, Song YS, Kim SH, Surh YJ (2003) Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24:1515–1524PubMedCrossRef
7.
go back to reference Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X, Petrik KL, Fornace AJ Jr, Rajasekaran B, Zhan Q (2002) ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene 21:7488–7496PubMedCrossRef Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X, Petrik KL, Fornace AJ Jr, Rajasekaran B, Zhan Q (2002) ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene 21:7488–7496PubMedCrossRef
8.
go back to reference Goldman SC, Chen CY, Lansing TJ, Gilmer TM, Kastan MB (1996) The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am J Pathol 148:1381–1385PubMed Goldman SC, Chen CY, Lansing TJ, Gilmer TM, Kastan MB (1996) The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am J Pathol 148:1381–1385PubMed
9.
go back to reference Goldsmith KC, Hogarty MD (2005) Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett 228:133–141PubMedCrossRef Goldsmith KC, Hogarty MD (2005) Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett 228:133–141PubMedCrossRef
10.
go back to reference Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273:1–11PubMedCrossRef Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273:1–11PubMedCrossRef
11.
go back to reference Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335PubMed Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335PubMed
12.
go back to reference Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827PubMedCrossRef Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827PubMedCrossRef
13.
go back to reference Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27PubMedCrossRef Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27PubMedCrossRef
14.
go back to reference Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62PubMedCrossRef Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62PubMedCrossRef
15.
go back to reference Kurata K, Yanagisawa R, Ohira M, Kitagawa M, Nakagawara A, Kamijo T (2008) Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene 27(6):741–754PubMedCrossRef Kurata K, Yanagisawa R, Ohira M, Kitagawa M, Nakagawara A, Kamijo T (2008) Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene 27(6):741–754PubMedCrossRef
16.
go back to reference Lee CC, Houghton P (2005) Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J Ethnopharmacol 100:237–243PubMedCrossRef Lee CC, Houghton P (2005) Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J Ethnopharmacol 100:237–243PubMedCrossRef
17.
go back to reference Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T (1996) ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271:1695–1701PubMedCrossRef Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T (1996) ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271:1695–1701PubMedCrossRef
18.
go back to reference Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ (2004) Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279:52175–52182PubMedCrossRef Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ (2004) Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279:52175–52182PubMedCrossRef
19.
go back to reference Lu D, Wolfgang CD, Hai T (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281:10473–10481PubMedCrossRef Lu D, Wolfgang CD, Hai T (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281:10473–10481PubMedCrossRef
20.
go back to reference Ly TN, Shimoyamada M, Kato K, Yamauchi R (2003) Isolation and characterization of some antioxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem 51:4924–4929PubMedCrossRef Ly TN, Shimoyamada M, Kato K, Yamauchi R (2003) Isolation and characterization of some antioxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem 51:4924–4929PubMedCrossRef
21.
go back to reference Ly TN, Yamauchi R, Shimoyamada M, Kato K (2002) Isolation and structural elucidation of some glycosides from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem 50:4919–4924PubMedCrossRef Ly TN, Yamauchi R, Shimoyamada M, Kato K (2002) Isolation and structural elucidation of some glycosides from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem 50:4919–4924PubMedCrossRef
22.
go back to reference Mao JH, Wu D, Perez-Losada J, Jiang T, Li Q, Neve RM, Gray JW, Cai WW, Balmain A (2007) Crosstalk between Aurora-A and p53: frequent deletion or downregulation of Aurora-A in tumors from p53 null mice. Cancer Cell 11:161–173PubMedCrossRef Mao JH, Wu D, Perez-Losada J, Jiang T, Li Q, Neve RM, Gray JW, Cai WW, Balmain A (2007) Crosstalk between Aurora-A and p53: frequent deletion or downregulation of Aurora-A in tumors from p53 null mice. Cancer Cell 11:161–173PubMedCrossRef
24.
go back to reference Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M (2002) ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol 34:1387–1397PubMedCrossRef Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M (2002) ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol 34:1387–1397PubMedCrossRef
25.
go back to reference Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971PubMed Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971PubMed
26.
go back to reference Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRef Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRef
27.
go back to reference Ronca F, Yee KS, Yu VC (1999) Retinoic acid confers resistance to p53-dependent apoptosis in SH-SY5Y neuroblastoma cells by modulating nuclear import of p53. J Biol Chem 274:18128–18134PubMedCrossRef Ronca F, Yee KS, Yu VC (1999) Retinoic acid confers resistance to p53-dependent apoptosis in SH-SY5Y neuroblastoma cells by modulating nuclear import of p53. J Biol Chem 274:18128–18134PubMedCrossRef
28.
go back to reference Shieh SY, Taya Y, Prives C (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18:1815–1823PubMedCrossRef Shieh SY, Taya Y, Prives C (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18:1815–1823PubMedCrossRef
29.
go back to reference Singh RP, Deep G, Blouin MJ, Pollak MN, Agarwal R (2007) Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft. Carcinogenesis 28:2567–2574PubMedCrossRef Singh RP, Deep G, Blouin MJ, Pollak MN, Agarwal R (2007) Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft. Carcinogenesis 28:2567–2574PubMedCrossRef
30.
go back to reference Steward WP, Gescher AJ (2008) Curcumin in cancer management: recent results of analogue design and clinical studies and desirable future research. Mol Nutr Food Res 52(9):1005–1009PubMedCrossRef Steward WP, Gescher AJ (2008) Curcumin in cancer management: recent results of analogue design and clinical studies and desirable future research. Mol Nutr Food Res 52(9):1005–1009PubMedCrossRef
31.
go back to reference Tian Z, Shen J, Moseman AP, Yang Q, Yang J, Xiao P, Wu E, Kohane IS (2008) Dulxanthone A induces cell cycle arrest and apoptosis via up-regulation of p53 through mitochondrial pathway in HepG2 cells. Int J Cancer 122:31–38PubMedCrossRef Tian Z, Shen J, Moseman AP, Yang Q, Yang J, Xiao P, Wu E, Kohane IS (2008) Dulxanthone A induces cell cycle arrest and apoptosis via up-regulation of p53 through mitochondrial pathway in HepG2 cells. Int J Cancer 122:31–38PubMedCrossRef
32.
go back to reference Tian Z, Yang M, Huang F, Li K, Si J, Shi L, Chen S, Xiao P (2005) Cytotoxicity of three cycloartane triterpenoids from Cimicifuga dahurica. Cancer Lett 226:65–75PubMedCrossRef Tian Z, Yang M, Huang F, Li K, Si J, Shi L, Chen S, Xiao P (2005) Cytotoxicity of three cycloartane triterpenoids from Cimicifuga dahurica. Cancer Lett 226:65–75PubMedCrossRef
33.
go back to reference Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E, Yigit N, Coppens V, Philippe J, De Paepe A, Marine JC, Vandesompele J (2006) Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 66:9646–9655PubMedCrossRef Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E, Yigit N, Coppens V, Philippe J, De Paepe A, Marine JC, Vandesompele J (2006) Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 66:9646–9655PubMedCrossRef
34.
go back to reference Wang T, Xia D, Li N, Wang C, Chen T, Wan T, Chen G, Cao X (2005) Bone marrow stromal cell-derived growth inhibitor inhibits growth and migration of breast cancer cells via induction of cell cycle arrest and apoptosis. J Biol Chem 280:4374–4382PubMedCrossRef Wang T, Xia D, Li N, Wang C, Chen T, Wan T, Chen G, Cao X (2005) Bone marrow stromal cell-derived growth inhibitor inhibits growth and migration of breast cancer cells via induction of cell cycle arrest and apoptosis. J Biol Chem 280:4374–4382PubMedCrossRef
35.
go back to reference Xue C, Haber M, Flemming C, Marshall GM, Lock RB, MacKenzie KL, Gurova KV, Norris MD, Gudkov AV (2007) p53 determines multidrug sensitivity of childhood neuroblastoma. Cancer Res 67:10351–10360PubMedCrossRef Xue C, Haber M, Flemming C, Marshall GM, Lock RB, MacKenzie KL, Gurova KV, Norris MD, Gudkov AV (2007) p53 determines multidrug sensitivity of childhood neuroblastoma. Cancer Res 67:10351–10360PubMedCrossRef
36.
go back to reference Yadav PN, Liu Z, Rafi MM (2003) A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J Pharmacol Exp Ther 305:925–931PubMedCrossRef Yadav PN, Liu Z, Rafi MM (2003) A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J Pharmacol Exp Ther 305:925–931PubMedCrossRef
37.
go back to reference Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD (2005) Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4:233–241PubMed Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD (2005) Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4:233–241PubMed
38.
go back to reference Yan C, Lu D, Hai T, Boyd DD (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 24:2425–2435PubMedCrossRef Yan C, Lu D, Hai T, Boyd DD (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 24:2425–2435PubMedCrossRef
39.
go back to reference Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S (2002) Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun 297:1302–1310PubMedCrossRef Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S (2002) Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun 297:1302–1310PubMedCrossRef
Metadata
Title
Cytotoxic diarylheptanoid induces cell cycle arrest and apoptosis via increasing ATF3 and stabilizing p53 in SH-SY5Y cells
Authors
Ze Tian
Ning An
Bin Zhou
Peigen Xiao
Isaac S. Kohane
Erxi Wu
Publication date
01-05-2009
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 6/2009
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-008-0832-5

Other articles of this Issue 6/2009

Cancer Chemotherapy and Pharmacology 6/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine