Skip to main content
Top
Published in: Medical Oncology 5/2024

01-05-2024 | Cytostatic Therapy | Review Aritcle

Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: new insights

Authors: Ahmadreza Lagzian, Marziye Askari, Melika Sadat Haeri, Nastaran Sheikhi, Sara Banihashemi, Mohsen Nabi-Afjadi, Yalda Malekzadegan

Published in: Medical Oncology | Issue 5/2024

Login to get access

Abstract

Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors’ microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.
Literature
2.
go back to reference El Sheikh M. Survival and quality of life for Sudanese oral cancer patients: University College Cork; 2018. El Sheikh M. Survival and quality of life for Sudanese oral cancer patients: University College Cork; 2018.
3.
go back to reference Johnson NW, Gupta B, Speicher DJ, Ray CS, Shaikh MH, Al-Hebshi N, et al. Etiology and risk factors. Oral and oropharyngeal cancer: CRC Press; 2018. p. 19–94. Johnson NW, Gupta B, Speicher DJ, Ray CS, Shaikh MH, Al-Hebshi N, et al. Etiology and risk factors. Oral and oropharyngeal cancer: CRC Press; 2018. p. 19–94.
4.
go back to reference Tangsiri M, Hheidari A, Liaghat M, Razlansari M, Ebrahimi N, Akbari A, et al. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed Pharmacother. 2024;170: 115973.PubMedCrossRef Tangsiri M, Hheidari A, Liaghat M, Razlansari M, Ebrahimi N, Akbari A, et al. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed Pharmacother. 2024;170: 115973.PubMedCrossRef
5.
go back to reference Chaturvedi P, Singhavi H, Malik A, Nair D. Outcome of head and neck squamous cell cancers in low-resource settings: Challenges and opportunities. Otolaryngol Clin North Am. 2018;51(3):619–29.PubMedCrossRef Chaturvedi P, Singhavi H, Malik A, Nair D. Outcome of head and neck squamous cell cancers in low-resource settings: Challenges and opportunities. Otolaryngol Clin North Am. 2018;51(3):619–29.PubMedCrossRef
6.
go back to reference Saalim M, Sansare K, Karjodkar FR, Johaley S, Ali IK, Sharma SR, et al. The prevalence of oral squamous cell carcinoma with oral submucous fibrosis. J Cancer Res Ther. 2021;17(6):1510–4.PubMedCrossRef Saalim M, Sansare K, Karjodkar FR, Johaley S, Ali IK, Sharma SR, et al. The prevalence of oral squamous cell carcinoma with oral submucous fibrosis. J Cancer Res Ther. 2021;17(6):1510–4.PubMedCrossRef
7.
go back to reference Panarese I, Aquino G, Ronchi A, Longo F, Montella M, Cozzolino I, et al. Oral and Oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route. Expert Rev Anticancer Ther. 2019;19(2):105–19.PubMedCrossRef Panarese I, Aquino G, Ronchi A, Longo F, Montella M, Cozzolino I, et al. Oral and Oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route. Expert Rev Anticancer Ther. 2019;19(2):105–19.PubMedCrossRef
9.
go back to reference Zhu Y, Huang R, Wu Z, Song S, Cheng L, Zhu R. Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun. 2021;12(1):2614.PubMedPubMedCentralCrossRef Zhu Y, Huang R, Wu Z, Song S, Cheng L, Zhu R. Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun. 2021;12(1):2614.PubMedPubMedCentralCrossRef
10.
go back to reference Cheng Y, Li S, Gao L, Zhi K, Ren W. The molecular basis and therapeutic aspects of cisplatin resistance in oral squamous cell carcinoma. Front Oncol. 2021;11: 761379.PubMedPubMedCentralCrossRef Cheng Y, Li S, Gao L, Zhi K, Ren W. The molecular basis and therapeutic aspects of cisplatin resistance in oral squamous cell carcinoma. Front Oncol. 2021;11: 761379.PubMedPubMedCentralCrossRef
11.
go back to reference Pan L, Feng F, Wu J, Fan S, Han J, Wang S, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. 2022;181: 106270.PubMedCrossRef Pan L, Feng F, Wu J, Fan S, Han J, Wang S, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. 2022;181: 106270.PubMedCrossRef
12.
go back to reference Xu H, Li L, Wang S, Wang Z, Qu L, Wang C, et al. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites. Phytomedicine. 2023:154940. Xu H, Li L, Wang S, Wang Z, Qu L, Wang C, et al. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites. Phytomedicine. 2023:154940.
13.
go back to reference Sharma M, Astekar M, Soi S, S Manjunatha B, C Shetty D, Radhakrishnan R. pH gradient reversal: an emerging hallmark of cancers. Recent patents on anti-cancer drug discovery. 2015;10(3):244–58. Sharma M, Astekar M, Soi S, S Manjunatha B, C Shetty D, Radhakrishnan R. pH gradient reversal: an emerging hallmark of cancers. Recent patents on anti-cancer drug discovery. 2015;10(3):244–58.
14.
go back to reference Gan Y, Xu Y, Zhang X, Hu H, Xiao W, Yu Z, et al. Revisiting Supersaturation of a Biopharmaceutical Classification System IIB Drug: Evaluation via a Multi-Cup Dissolution Approach and Molecular Dynamic Simulation. Molecules. 2023;28(19):6962.PubMedPubMedCentralCrossRef Gan Y, Xu Y, Zhang X, Hu H, Xiao W, Yu Z, et al. Revisiting Supersaturation of a Biopharmaceutical Classification System IIB Drug: Evaluation via a Multi-Cup Dissolution Approach and Molecular Dynamic Simulation. Molecules. 2023;28(19):6962.PubMedPubMedCentralCrossRef
15.
go back to reference Otero-Rey EM, Somoza-Martín M, Barros-Angueira F, García-García A. Intracellular pH regulation in oral squamous cell carcinoma is mediated by increased V-ATPase activity via over-expression of the ATP6V1C1 gene. Oral Oncol. 2008;44(2):193–9.PubMedCrossRef Otero-Rey EM, Somoza-Martín M, Barros-Angueira F, García-García A. Intracellular pH regulation in oral squamous cell carcinoma is mediated by increased V-ATPase activity via over-expression of the ATP6V1C1 gene. Oral Oncol. 2008;44(2):193–9.PubMedCrossRef
16.
go back to reference Eaton AF, Merkulova M, Brown D. The H+-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol. 2021;320(3):C392–414.PubMedCrossRef Eaton AF, Merkulova M, Brown D. The H+-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol. 2021;320(3):C392–414.PubMedCrossRef
19.
go back to reference Gao Y, Liu Y, Liu Y, Peng Y, Yuan B, Fu Y, et al. UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Lett. 2021;520:172–183.PubMedCrossRef Gao Y, Liu Y, Liu Y, Peng Y, Yuan B, Fu Y, et al. UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Lett. 2021;520:172–183.PubMedCrossRef
20.
go back to reference Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 2020;21(12):4392.PubMedPubMedCentralCrossRef Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 2020;21(12):4392.PubMedPubMedCentralCrossRef
21.
go back to reference Wang Y, Zhang L, Wei Y, Huang W, Li L, Wu A-a, et al. Pharmacological targeting of vacuolar H+-ATPase via subunit V1G combats multidrug-resistant cancer. Cell Chem Biol. 2020;27(11):1359. Wang Y, Zhang L, Wei Y, Huang W, Li L, Wu A-a, et al. Pharmacological targeting of vacuolar H+-ATPase via subunit V1G combats multidrug-resistant cancer. Cell Chem Biol. 2020;27(11):1359.
22.
go back to reference Law Z-J, Khoo XH, Lim PT, Goh BH, Ming LC, Lee W-L, et al. Extracellular vesicle-mediated chemoresistance in oral squamous cell carcinoma. Front Mol Biosci. 2021;8: 629888.PubMedPubMedCentralCrossRef Law Z-J, Khoo XH, Lim PT, Goh BH, Ming LC, Lee W-L, et al. Extracellular vesicle-mediated chemoresistance in oral squamous cell carcinoma. Front Mol Biosci. 2021;8: 629888.PubMedPubMedCentralCrossRef
23.
go back to reference Kiyoshima T, Yoshida H, Wada H, Nagata K, Fujiwara H, Kihara M, et al. Chemoresistance to concanamycin A1 in human oral squamous cell carcinoma is attenuated by an HDAC inhibitor partly via suppression of Bcl-2 expression. PLoS ONE. 2013;8(11): e80998.PubMedPubMedCentralCrossRef Kiyoshima T, Yoshida H, Wada H, Nagata K, Fujiwara H, Kihara M, et al. Chemoresistance to concanamycin A1 in human oral squamous cell carcinoma is attenuated by an HDAC inhibitor partly via suppression of Bcl-2 expression. PLoS ONE. 2013;8(11): e80998.PubMedPubMedCentralCrossRef
24.
go back to reference Dong Y, Zhu G, Wang S-F, Keon KA, Rubinstein JL, Zeng S-X, et al. Toosendanin, a novel potent vacuolar-type H+-translocating ATPase inhibitor, sensitizes cancer cells to chemotherapy by blocking protective autophagy. Int J Biol Sci. 2022;18(7):2684.PubMedPubMedCentralCrossRef Dong Y, Zhu G, Wang S-F, Keon KA, Rubinstein JL, Zeng S-X, et al. Toosendanin, a novel potent vacuolar-type H+-translocating ATPase inhibitor, sensitizes cancer cells to chemotherapy by blocking protective autophagy. Int J Biol Sci. 2022;18(7):2684.PubMedPubMedCentralCrossRef
25.
go back to reference Zhang Y, Mengnan Z, Benke L, Zhang B, Bing C, Yuanyuan W, et al. Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin J Nat Med. 2023;21(5):371–82.PubMed Zhang Y, Mengnan Z, Benke L, Zhang B, Bing C, Yuanyuan W, et al. Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin J Nat Med. 2023;21(5):371–82.PubMed
26.
go back to reference Kulshrestha A, Katara GK, Ibrahim SA, Riehl VE, Schneiderman S, Bilal M, et al. In vivo anti-V-ATPase antibody treatment delays ovarian tumor growth by increasing antitumor immune responses. Mol Oncol. 2020;14(10):2436–54.PubMedPubMedCentralCrossRef Kulshrestha A, Katara GK, Ibrahim SA, Riehl VE, Schneiderman S, Bilal M, et al. In vivo anti-V-ATPase antibody treatment delays ovarian tumor growth by increasing antitumor immune responses. Mol Oncol. 2020;14(10):2436–54.PubMedPubMedCentralCrossRef
27.
go back to reference Zhu L, Smith PP, Boyes SG. pH-responsive polymers for imaging acidic biological environments in tumors. J Polym Sci B Polym Phys. 2013;51:1062.CrossRef Zhu L, Smith PP, Boyes SG. pH-responsive polymers for imaging acidic biological environments in tumors. J Polym Sci B Polym Phys. 2013;51:1062.CrossRef
28.
go back to reference de Bem PB, Nunes JS, da Silva VP, Laureano NK, Gonçalves DR, Machado IS, et al. The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma. Life Sci. 2022;288: 120163.CrossRef de Bem PB, Nunes JS, da Silva VP, Laureano NK, Gonçalves DR, Machado IS, et al. The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma. Life Sci. 2022;288: 120163.CrossRef
29.
go back to reference Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, et al. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars Cancer Biol. 2017;43:74.CrossRef Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, et al. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars Cancer Biol. 2017;43:74.CrossRef
30.
go back to reference Alshaker HA, Matalka KZ. IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int. 2011;11(1):1–12.CrossRef Alshaker HA, Matalka KZ. IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int. 2011;11(1):1–12.CrossRef
32.
go back to reference Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett. 2022;27(1):1–24.CrossRef Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett. 2022;27(1):1–24.CrossRef
33.
go back to reference Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Can Res. 2016;76(6):1381–90.CrossRef Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Can Res. 2016;76(6):1381–90.CrossRef
34.
go back to reference Tong L, Yue P, Yang Y, Huang J, Zeng Z, Qiu W. Motility and mechanical properties of dendritic cells deteriorated by extracellular acidosis. Inflammation. 2021;44:737–45.PubMedCrossRef Tong L, Yue P, Yang Y, Huang J, Zeng Z, Qiu W. Motility and mechanical properties of dendritic cells deteriorated by extracellular acidosis. Inflammation. 2021;44:737–45.PubMedCrossRef
35.
go back to reference Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: Manipulating the immune response to elicit escape. Hum Immunol. 2022;83(5):399–408.PubMedCrossRef Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: Manipulating the immune response to elicit escape. Hum Immunol. 2022;83(5):399–408.PubMedCrossRef
36.
go back to reference Cao J, Chen C, Wang Y, Chen X, Chen Z, Luo X. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro. Oncol Lett. 2016;12(3):2033–7.PubMedPubMedCentralCrossRef Cao J, Chen C, Wang Y, Chen X, Chen Z, Luo X. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro. Oncol Lett. 2016;12(3):2033–7.PubMedPubMedCentralCrossRef
37.
go back to reference Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, et al. The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163: 114839.PubMedCrossRef Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, et al. The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163: 114839.PubMedCrossRef
38.
go back to reference Lv C, Yang X, Yu B, Ma Q, Liu B, Liu Y. Blocking the Na+/H+ exchanger 1 with cariporide (HOE642) reduces the hypoxia-induced invasion of human tongue squamous cell carcinoma. Int J Oral Maxillofac Surg. 2012;41(10):1206–10.PubMedCrossRef Lv C, Yang X, Yu B, Ma Q, Liu B, Liu Y. Blocking the Na+/H+ exchanger 1 with cariporide (HOE642) reduces the hypoxia-induced invasion of human tongue squamous cell carcinoma. Int J Oral Maxillofac Surg. 2012;41(10):1206–10.PubMedCrossRef
39.
go back to reference Zhou J, Guo T, Zhou L, Bao M, Wang L, Zhou W, et al. The ferroptosis signature predicts the prognosis and immune microenvironment of nasopharyngeal carcinoma. Sci Rep. 2023;13(1):1861.PubMedPubMedCentralCrossRef Zhou J, Guo T, Zhou L, Bao M, Wang L, Zhou W, et al. The ferroptosis signature predicts the prognosis and immune microenvironment of nasopharyngeal carcinoma. Sci Rep. 2023;13(1):1861.PubMedPubMedCentralCrossRef
40.
go back to reference Hu J, Li G, Liu Z, Ma H, Yuan W, Lu Z, et al. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway. Mol Carcinogenesis. 2023;62:628.CrossRef Hu J, Li G, Liu Z, Ma H, Yuan W, Lu Z, et al. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway. Mol Carcinogenesis. 2023;62:628.CrossRef
41.
go back to reference Swenson ER. Carbonic anhydrase inhibitors and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2006;151(2–3):209–16.PubMedCrossRef Swenson ER. Carbonic anhydrase inhibitors and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2006;151(2–3):209–16.PubMedCrossRef
42.
go back to reference Chu Y-H, Su C-W, Hsieh Y-S, Chen P-N, Lin C-W, Yang S-F. Carbonic anhydrase III promotes cell migration and epithelial-mesenchymal transition in oral squamous cell carcinoma. Cells. 2020;9(3):704.PubMedPubMedCentralCrossRef Chu Y-H, Su C-W, Hsieh Y-S, Chen P-N, Lin C-W, Yang S-F. Carbonic anhydrase III promotes cell migration and epithelial-mesenchymal transition in oral squamous cell carcinoma. Cells. 2020;9(3):704.PubMedPubMedCentralCrossRef
43.
go back to reference Ivanov S, Liao S-Y, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158(3):905–19.PubMedPubMedCentralCrossRef Ivanov S, Liao S-Y, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158(3):905–19.PubMedPubMedCentralCrossRef
44.
go back to reference Choi S-W, Kim J-Y, Park J-Y, Cha I-H, Kim J, Lee S. Expression of carbonic anhydrase IX is associated with postoperative recurrence and poor prognosis in surgically treated oral squamous cell carcinoma. Hum Pathol. 2008;39(9):1317–22.PubMedCrossRef Choi S-W, Kim J-Y, Park J-Y, Cha I-H, Kim J, Lee S. Expression of carbonic anhydrase IX is associated with postoperative recurrence and poor prognosis in surgically treated oral squamous cell carcinoma. Hum Pathol. 2008;39(9):1317–22.PubMedCrossRef
45.
go back to reference Akocak S, Güzel-Akdemir Ö, Sanku RKK, Russom SS, Iorga BI, Supuran CT, et al. Pyridinium derivatives of 3-aminobenzenesulfonamide are nanomolar-potent inhibitors of tumor-expressed carbonic anhydrase isozymes CA IX and CA XII. Bioorg Chem. 2020;103: 104204.PubMedPubMedCentralCrossRef Akocak S, Güzel-Akdemir Ö, Sanku RKK, Russom SS, Iorga BI, Supuran CT, et al. Pyridinium derivatives of 3-aminobenzenesulfonamide are nanomolar-potent inhibitors of tumor-expressed carbonic anhydrase isozymes CA IX and CA XII. Bioorg Chem. 2020;103: 104204.PubMedPubMedCentralCrossRef
46.
go back to reference Ivanov SV, Kuzmin I, Wei M-H, Pack S, Geil L, Johnson BE, et al. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci. 1998;95(21):12596–601.PubMedPubMedCentralCrossRef Ivanov SV, Kuzmin I, Wei M-H, Pack S, Geil L, Johnson BE, et al. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci. 1998;95(21):12596–601.PubMedPubMedCentralCrossRef
47.
go back to reference Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos K, Pastorek J, Wykoff CC, et al. Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clin Cancer Res. 2001;7(11):3399–403.PubMed Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos K, Pastorek J, Wykoff CC, et al. Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clin Cancer Res. 2001;7(11):3399–403.PubMed
48.
go back to reference Hedley D, Pintilie M, Woo J, Morrison A, Birle D, Fyles A, et al. Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clin Cancer Res. 2003;9(15):5666–74.PubMed Hedley D, Pintilie M, Woo J, Morrison A, Birle D, Fyles A, et al. Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clin Cancer Res. 2003;9(15):5666–74.PubMed
49.
go back to reference Daunys S, Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol Cell. 2020;112(12):383–97.PubMedCrossRef Daunys S, Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol Cell. 2020;112(12):383–97.PubMedCrossRef
50.
go back to reference Chien M-H, Ying T-H, Hsieh Y-H, Lin C-H, Shih C-H, Wei L-H, et al. Tumor-associated carbonic anhydrase XII is linked to the growth of primary oral squamous cell carcinoma and its poor prognosis. Oral Oncol. 2012;48(5):417–23.PubMedCrossRef Chien M-H, Ying T-H, Hsieh Y-H, Lin C-H, Shih C-H, Wei L-H, et al. Tumor-associated carbonic anhydrase XII is linked to the growth of primary oral squamous cell carcinoma and its poor prognosis. Oral Oncol. 2012;48(5):417–23.PubMedCrossRef
51.
go back to reference Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer. 2018;17:1–9.CrossRef Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer. 2018;17:1–9.CrossRef
52.
go back to reference Huang L, Lu Q, Han Y, Li Z, Zhang Z, Li X. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn Pathol. 2012;7(1):1–7.CrossRef Huang L, Lu Q, Han Y, Li Z, Zhang Z, Li X. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn Pathol. 2012;7(1):1–7.CrossRef
53.
go back to reference Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Diz PG, Rey JMG, García-García A. Multidrug resistance in oral squamous cell carcinoma: the role of vacuolar ATPases. Cancer Lett. 2010;295(2):135–43.PubMedCrossRef Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Diz PG, Rey JMG, García-García A. Multidrug resistance in oral squamous cell carcinoma: the role of vacuolar ATPases. Cancer Lett. 2010;295(2):135–43.PubMedCrossRef
54.
go back to reference Ghaly AM, Elshenshawy HMA, Abd El Hafez A, Ibrahim MMA, El-Sissi AAI. The prognostic role of hypoxia and the microenvironmental acidity in chemo-radio resistance in oral squamous cell carcinoma patients. Acta Biomed. 2023;94(3):e20237114. Ghaly AM, Elshenshawy HMA, Abd El Hafez A, Ibrahim MMA, El-Sissi AAI. The prognostic role of hypoxia and the microenvironmental acidity in chemo-radio resistance in oral squamous cell carcinoma patients. Acta Biomed. 2023;94(3):e20237114.
55.
go back to reference Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 2019;38:93–101.PubMedCrossRef Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 2019;38:93–101.PubMedCrossRef
56.
go back to reference Pérez-Sayáns M, García-García A, Reboiras-López MD, Gándara-Vila P. Role of V-ATPases in solid tumors: importance of the subunit C. Int J Oncol. 2009;34(6):1513–20.PubMedCrossRef Pérez-Sayáns M, García-García A, Reboiras-López MD, Gándara-Vila P. Role of V-ATPases in solid tumors: importance of the subunit C. Int J Oncol. 2009;34(6):1513–20.PubMedCrossRef
57.
go back to reference Kobliakov V. The role of extra-and intracellular pH values in regulation of the tumor process. Cell and Tissue Biology. 2022;16(2):114–20.CrossRef Kobliakov V. The role of extra-and intracellular pH values in regulation of the tumor process. Cell and Tissue Biology. 2022;16(2):114–20.CrossRef
58.
go back to reference Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol. 2020;125: 105796.PubMedCrossRef Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol. 2020;125: 105796.PubMedCrossRef
59.
go back to reference Whitton B. Investigating the role of vacuolar-ATPase (V-ATPase) in cancer: University of Southampton; 2020. Whitton B. Investigating the role of vacuolar-ATPase (V-ATPase) in cancer: University of Southampton; 2020.
60.
go back to reference Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN, et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol. 2004;286(6):C1443–52.PubMedCrossRef Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN, et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol. 2004;286(6):C1443–52.PubMedCrossRef
61.
go back to reference Capecci J. Function of Plasma Membrane V-ATPases in Breast Tumor Cell Invasion: Tufts University-Graduate School of Biomedical Sciences; 2014. Capecci J. Function of Plasma Membrane V-ATPases in Breast Tumor Cell Invasion: Tufts University-Graduate School of Biomedical Sciences; 2014.
62.
go back to reference Nishi T, Forgac M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3(2):94–103.PubMedCrossRef Nishi T, Forgac M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3(2):94–103.PubMedCrossRef
63.
go back to reference Su KL. The Role of Plasma Membrane V-ATPases in Breast Cancer Metastasis: Tufts University-Graduate School of Biomedical Sciences; 2021. Su KL. The Role of Plasma Membrane V-ATPases in Breast Cancer Metastasis: Tufts University-Graduate School of Biomedical Sciences; 2021.
64.
go back to reference Boedtkjer E. Ion channels, transporters, and sensors interact with the acidic tumor microenvironment to modify cancer progression. From Malignant Transformation to Metastasis: Ion Transport in Tumor Biology. 2021:39–84. Boedtkjer E. Ion channels, transporters, and sensors interact with the acidic tumor microenvironment to modify cancer progression. From Malignant Transformation to Metastasis: Ion Transport in Tumor Biology. 2021:39–84.
65.
go back to reference Di Pompo G, Cortini M, Baldini N, Avnet S. Acid microenvironment in bone sarcomas Cancers. 2021;13(15):3848.PubMed Di Pompo G, Cortini M, Baldini N, Avnet S. Acid microenvironment in bone sarcomas Cancers. 2021;13(15):3848.PubMed
66.
go back to reference Fliegel L. Role of pH regulatory proteins and dysregulation of pH in prostate cancer. From Malignant Transformation to Metastasis: Ion Transport in Tumor Biology. 2020:85–110. Fliegel L. Role of pH regulatory proteins and dysregulation of pH in prostate cancer. From Malignant Transformation to Metastasis: Ion Transport in Tumor Biology. 2020:85–110.
67.
go back to reference Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H. The cellular biology of proton-motive force generation by V-ATPases. J Exp Biol. 2000;203(1):89–95.PubMedCrossRef Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H. The cellular biology of proton-motive force generation by V-ATPases. J Exp Biol. 2000;203(1):89–95.PubMedCrossRef
70.
go back to reference Thews O, Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 2019;38:113–29.PubMedCrossRef Thews O, Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 2019;38:113–29.PubMedCrossRef
71.
72.
go back to reference Lorenzo Pouso AI, González-Moles MÁ, Ramos-García P, Pérez SM. The Immunohistochemical Landscape of the Hypoxia-Related Proteins in Oral Squamous Cell Carcinoma. Cham: Springer; 2022.CrossRef Lorenzo Pouso AI, González-Moles MÁ, Ramos-García P, Pérez SM. The Immunohistochemical Landscape of the Hypoxia-Related Proteins in Oral Squamous Cell Carcinoma. Cham: Springer; 2022.CrossRef
73.
go back to reference Lorenzo-Pouso AI, Castelo-Baz P, Pérez-Sayáns M, Lim J, Leira Y. Autophagy in periodontal disease: Evidence from a literature review. Arch Oral Biol. 2019;102:55–64.PubMedCrossRef Lorenzo-Pouso AI, Castelo-Baz P, Pérez-Sayáns M, Lim J, Leira Y. Autophagy in periodontal disease: Evidence from a literature review. Arch Oral Biol. 2019;102:55–64.PubMedCrossRef
74.
go back to reference Vitavska O, Wieczorek H, Merzendorfer H. A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J Biol Chem. 2003;278(20):18499–505.PubMedCrossRef Vitavska O, Wieczorek H, Merzendorfer H. A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J Biol Chem. 2003;278(20):18499–505.PubMedCrossRef
75.
go back to reference Tripathi A, Misra S. Vacuolar ATPase (V-ATPase) Proton Pump and Its Significance in Human Health. Ion Transporters-From Basic Properties to Medical Treatment: IntechOpen; 2022. Tripathi A, Misra S. Vacuolar ATPase (V-ATPase) Proton Pump and Its Significance in Human Health. Ion Transporters-From Basic Properties to Medical Treatment: IntechOpen; 2022.
76.
go back to reference Sennoune SR, Martinez-Zaguilan R. Plasmalemmal vacuolar H+-ATPases in angiogenesis, diabetes and cancer. J Bioenerg Biomembr. 2007;39:427–33.PubMedCrossRef Sennoune SR, Martinez-Zaguilan R. Plasmalemmal vacuolar H+-ATPases in angiogenesis, diabetes and cancer. J Bioenerg Biomembr. 2007;39:427–33.PubMedCrossRef
77.
go back to reference Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Reports. 2022;5(12): e1291.PubMedCrossRef Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Reports. 2022;5(12): e1291.PubMedCrossRef
78.
go back to reference Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour microenvironment stress promotes the development of drug resistance. Antioxidants. 2021;10(11):1801.PubMedPubMedCentralCrossRef Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour microenvironment stress promotes the development of drug resistance. Antioxidants. 2021;10(11):1801.PubMedPubMedCentralCrossRef
79.
go back to reference Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev. 2009;35(8):707–13.PubMedCrossRef Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev. 2009;35(8):707–13.PubMedCrossRef
80.
go back to reference Becelli R, Renzi G, Morello R, Altieri F. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer. J Craniofacial Surg. 2007;18(5):1051–4.CrossRef Becelli R, Renzi G, Morello R, Altieri F. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer. J Craniofacial Surg. 2007;18(5):1051–4.CrossRef
81.
go back to reference Hamm R, Sugimoto Y, Steinmetz H, Efferth T. Resistance mechanisms of cancer cells to the novel vacuolar H+-ATPase inhibitor archazolid B. Invest New Drugs. 2014;32:893–903.PubMedCrossRef Hamm R, Sugimoto Y, Steinmetz H, Efferth T. Resistance mechanisms of cancer cells to the novel vacuolar H+-ATPase inhibitor archazolid B. Invest New Drugs. 2014;32:893–903.PubMedCrossRef
82.
go back to reference Tavares-Valente D, Sousa B, Schmitt F, Baltazar F, Queirós O. Disruption of pH dynamics suppresses proliferation and potentiates doxorubicin cytotoxicity in breast cancer cells. Pharmaceutics. 2021;13(2):242.PubMedPubMedCentralCrossRef Tavares-Valente D, Sousa B, Schmitt F, Baltazar F, Queirós O. Disruption of pH dynamics suppresses proliferation and potentiates doxorubicin cytotoxicity in breast cancer cells. Pharmaceutics. 2021;13(2):242.PubMedPubMedCentralCrossRef
83.
go back to reference Martınez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, et al. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol. 1999;57(9):1037–46.PubMedCrossRef Martınez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, et al. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol. 1999;57(9):1037–46.PubMedCrossRef
84.
go back to reference Chadwick SR, Grinstein S, Freeman SA. From the inside out: ion fluxes at the centre of endocytic traffic. Curr Opin Cell Biol. 2021;71:77–86.PubMedCrossRef Chadwick SR, Grinstein S, Freeman SA. From the inside out: ion fluxes at the centre of endocytic traffic. Curr Opin Cell Biol. 2021;71:77–86.PubMedCrossRef
85.
go back to reference Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, et al. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol. 1999;57:1037.PubMedCrossRef Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, et al. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol. 1999;57:1037.PubMedCrossRef
86.
go back to reference Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San NM. WNT signaling in tumors: the way to evade drugs and immunity. Front Immunol. 2019;10:2854.PubMedPubMedCentralCrossRef Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San NM. WNT signaling in tumors: the way to evade drugs and immunity. Front Immunol. 2019;10:2854.PubMedPubMedCentralCrossRef
88.
go back to reference Raghunand N, He X, Van Sluis R, Mahoney B, Baggett B, Taylor C, et al. Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer. 1999;80(7):1005–11.PubMedPubMedCentralCrossRef Raghunand N, He X, Van Sluis R, Mahoney B, Baggett B, Taylor C, et al. Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer. 1999;80(7):1005–11.PubMedPubMedCentralCrossRef
89.
go back to reference Murakami T, Shibuya I, Ise T, Chen ZS, Si A, Nakagawa M, et al. Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer. 2001;93(6):869–74.PubMedCrossRef Murakami T, Shibuya I, Ise T, Chen ZS, Si A, Nakagawa M, et al. Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer. 2001;93(6):869–74.PubMedCrossRef
91.
go back to reference Zalpoor H, Rezaei M, Yahyazadeh S, Ganjalikhani-Hakemi M. Flt3-ITD mutated acute myeloid leukemia patients and COVID-19: potential roles of autophagy and HIF-1α in leukemia progression and mortality. Hum Cell. 2022;35(4):1304–5.PubMedPubMedCentralCrossRef Zalpoor H, Rezaei M, Yahyazadeh S, Ganjalikhani-Hakemi M. Flt3-ITD mutated acute myeloid leukemia patients and COVID-19: potential roles of autophagy and HIF-1α in leukemia progression and mortality. Hum Cell. 2022;35(4):1304–5.PubMedPubMedCentralCrossRef
94.
go back to reference Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, et al. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell. 2023;37:139.PubMedCrossRef Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, et al. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell. 2023;37:139.PubMedCrossRef
95.
go back to reference Zalpoor H, Bakhtiyari M, Akbari A, Aziziyan F, Shapourian H, Liaghat M, et al. Potential role of autophagy induced by FLT3-ITD and acid ceramidase in acute myeloid leukemia chemo-resistance: new insights. Cell Communication and Signaling. 2022;20(1):172.PubMedPubMedCentralCrossRef Zalpoor H, Bakhtiyari M, Akbari A, Aziziyan F, Shapourian H, Liaghat M, et al. Potential role of autophagy induced by FLT3-ITD and acid ceramidase in acute myeloid leukemia chemo-resistance: new insights. Cell Communication and Signaling. 2022;20(1):172.PubMedPubMedCentralCrossRef
97.
go back to reference Dai Z, Zhu B, Yu H, Jian X, Peng J, Fang C, et al. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis. Arch Oral Biol. 2019;102:7–15.PubMedCrossRef Dai Z, Zhu B, Yu H, Jian X, Peng J, Fang C, et al. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis. Arch Oral Biol. 2019;102:7–15.PubMedCrossRef
98.
go back to reference Pangarkar M, Wagh U, Pathak A. Autophagy indicators in oral squamous cell carcinoma. Pathology. 2023;56:59.PubMedCrossRef Pangarkar M, Wagh U, Pathak A. Autophagy indicators in oral squamous cell carcinoma. Pathology. 2023;56:59.PubMedCrossRef
99.
go back to reference Kulkarni B, Gondaliya P, Kirave P, Rawal R, Jain A, Garg R, et al. Exosome-mediated delivery of miR-30a sensitize cisplatin-resistant variant of oral squamous carcinoma cells via modulating Beclin1 and Bcl2. Oncotarget. 2020;11(20):1832.PubMedPubMedCentralCrossRef Kulkarni B, Gondaliya P, Kirave P, Rawal R, Jain A, Garg R, et al. Exosome-mediated delivery of miR-30a sensitize cisplatin-resistant variant of oral squamous carcinoma cells via modulating Beclin1 and Bcl2. Oncotarget. 2020;11(20):1832.PubMedPubMedCentralCrossRef
100.
go back to reference Naik PP, Mukhopadhyay S, Panda PK, Sinha N, Das CK, Mishra R, et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD 44, ABCB 1 and ADAM 17 in oral squamous cell carcinoma. Cell Prolif. 2018;51(1): e12411.PubMedCrossRef Naik PP, Mukhopadhyay S, Panda PK, Sinha N, Das CK, Mishra R, et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD 44, ABCB 1 and ADAM 17 in oral squamous cell carcinoma. Cell Prolif. 2018;51(1): e12411.PubMedCrossRef
101.
go back to reference Li J-M, Li X, Chan LW, Hu R, Zheng T, Li H, et al. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia. 2023;66(12):2368–2386.PubMedCrossRef Li J-M, Li X, Chan LW, Hu R, Zheng T, Li H, et al. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia. 2023;66(12):2368–2386.PubMedCrossRef
102.
go back to reference Sambandam Y, Ethiraj P, Hathaway-Schrader JD, Novince CM, Panneerselvam E, Sundaram K, et al. Autoregulation of RANK ligand in oral squamous cell carcinoma tumor cells. J Cell Physiol. 2018;233(8):6125–34.PubMedPubMedCentralCrossRef Sambandam Y, Ethiraj P, Hathaway-Schrader JD, Novince CM, Panneerselvam E, Sundaram K, et al. Autoregulation of RANK ligand in oral squamous cell carcinoma tumor cells. J Cell Physiol. 2018;233(8):6125–34.PubMedPubMedCentralCrossRef
103.
go back to reference Zhang X, Junior CR, Liu M, Li F, D’Silva NJ, Kirkwood KL. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol. 2013;49(2):119–28.PubMedCrossRef Zhang X, Junior CR, Liu M, Li F, D’Silva NJ, Kirkwood KL. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol. 2013;49(2):119–28.PubMedCrossRef
104.
go back to reference Peña-Oyarzún D, Reyes M, Hernández-Cáceres MP, Kretschmar C, Morselli E, Ramirez-Sarmiento CA, et al. Role of autophagy in the microenvironment of oral squamous cell carcinoma. Front Oncol. 2020;10: 602661.PubMedPubMedCentralCrossRef Peña-Oyarzún D, Reyes M, Hernández-Cáceres MP, Kretschmar C, Morselli E, Ramirez-Sarmiento CA, et al. Role of autophagy in the microenvironment of oral squamous cell carcinoma. Front Oncol. 2020;10: 602661.PubMedPubMedCentralCrossRef
105.
go back to reference Ethiraj P, Sambandam Y, Hathaway-Schrader JD, Haque A, Novince CM, Reddy SV. RANKL triggers resistance to TRAIL-induced cell death in oral squamous cell carcinoma. J Cell Physiol. 2020;235(2):1663–73.PubMedCrossRef Ethiraj P, Sambandam Y, Hathaway-Schrader JD, Haque A, Novince CM, Reddy SV. RANKL triggers resistance to TRAIL-induced cell death in oral squamous cell carcinoma. J Cell Physiol. 2020;235(2):1663–73.PubMedCrossRef
106.
go back to reference Zhao W, Chen C, Zhou J, Chen X, Cai K, Shen M, et al. Inhibition of autophagy promotes the anti-tumor effect of metformin in oral squamous cell carcinoma. Cancers. 2022;14(17):4185.PubMedPubMedCentralCrossRef Zhao W, Chen C, Zhou J, Chen X, Cai K, Shen M, et al. Inhibition of autophagy promotes the anti-tumor effect of metformin in oral squamous cell carcinoma. Cancers. 2022;14(17):4185.PubMedPubMedCentralCrossRef
107.
go back to reference Torigoe T, Izumi H, Ise T, Murakami T, Uramoto H, Ishiguchi H, et al. Vacuolar H+-ATPase: functional mechanisms and potential as a target for cancer chemotherapy. Anticancer Drugs. 2002;13(3):237–43.PubMedCrossRef Torigoe T, Izumi H, Ise T, Murakami T, Uramoto H, Ishiguchi H, et al. Vacuolar H+-ATPase: functional mechanisms and potential as a target for cancer chemotherapy. Anticancer Drugs. 2002;13(3):237–43.PubMedCrossRef
108.
go back to reference Willingham MC, Cornwell MM, Cardarelli CO, Gottesman MM, Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and-sensitive KB cells: effects of verapamil and other drugs. Can Res. 1986;46(11):5941–6. Willingham MC, Cornwell MM, Cardarelli CO, Gottesman MM, Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and-sensitive KB cells: effects of verapamil and other drugs. Can Res. 1986;46(11):5941–6.
109.
go back to reference Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Can Res. 2001;61(2):439–44. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Can Res. 2001;61(2):439–44.
110.
go back to reference Sasazawa Y, Futamura Y, Tashiro E, Imoto M. Vacuolar H+-ATPase inhibitors overcome Bcl-xL-mediated chemoresistance through restoration of a caspase-independent apoptotic pathway. Cancer Sci. 2009;100(8):1460–7.PubMedCrossRef Sasazawa Y, Futamura Y, Tashiro E, Imoto M. Vacuolar H+-ATPase inhibitors overcome Bcl-xL-mediated chemoresistance through restoration of a caspase-independent apoptotic pathway. Cancer Sci. 2009;100(8):1460–7.PubMedCrossRef
111.
go back to reference Schempp CM, von Schwarzenberg K, Schreiner L, Kubisch R, Müller R, Wagner E, et al. V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther. 2014;13(4):926–37.PubMedCrossRef Schempp CM, von Schwarzenberg K, Schreiner L, Kubisch R, Müller R, Wagner E, et al. V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther. 2014;13(4):926–37.PubMedCrossRef
112.
go back to reference Perut F, Avnet S, Fotia C, Baglìo SR, Salerno M, Hosogi S, et al. V-ATPase as an effective therapeutic target for sarcomas. Exp Cell Res. 2014;320(1):21–32.PubMedCrossRef Perut F, Avnet S, Fotia C, Baglìo SR, Salerno M, Hosogi S, et al. V-ATPase as an effective therapeutic target for sarcomas. Exp Cell Res. 2014;320(1):21–32.PubMedCrossRef
113.
go back to reference Kataoka T, Muroi M, Ohkuma S, Waritani T, Magae J, Takatsuki A, et al. Prodigiosin 25-C uncouples vacuolar type H+-ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett. 1995;359(1):53–9.PubMedCrossRef Kataoka T, Muroi M, Ohkuma S, Waritani T, Magae J, Takatsuki A, et al. Prodigiosin 25-C uncouples vacuolar type H+-ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett. 1995;359(1):53–9.PubMedCrossRef
114.
go back to reference Bowman BJ, Bowman EJ. Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem. 2002;277(6):3965–72.PubMedCrossRef Bowman BJ, Bowman EJ. Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem. 2002;277(6):3965–72.PubMedCrossRef
115.
go back to reference Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. J Pharmacol Exp Ther. 2001;297(1):114–20.PubMed Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. J Pharmacol Exp Ther. 2001;297(1):114–20.PubMed
116.
117.
go back to reference Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, et al. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC Biochem. 2005;6(1):1–10.CrossRef Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, et al. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC Biochem. 2005;6(1):1–10.CrossRef
118.
go back to reference Fernandes F, Loura L, Fedorov A, Dixon N, Kee T, Prieto M, et al. Binding assays of inhibitors towards selected V-ATPase domains. Biochim Biophys Acta. 2006;1758(11):1777–86.PubMedCrossRef Fernandes F, Loura L, Fedorov A, Dixon N, Kee T, Prieto M, et al. Binding assays of inhibitors towards selected V-ATPase domains. Biochim Biophys Acta. 2006;1758(11):1777–86.PubMedCrossRef
119.
go back to reference Li S, Wu Y, Ding Y, Yu M, Ai Z. CerS6 regulates cisplatin resistance in oral squamous cell carcinoma by altering mitochondrial fission and autophagy. J Cell Physiol. 2018;233(12):9416–25.PubMedCrossRef Li S, Wu Y, Ding Y, Yu M, Ai Z. CerS6 regulates cisplatin resistance in oral squamous cell carcinoma by altering mitochondrial fission and autophagy. J Cell Physiol. 2018;233(12):9416–25.PubMedCrossRef
120.
go back to reference Wang X, Liu W, Wang P, Li S. RNA interference of long noncoding RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to cisplatin in oral squamous cell carcinoma. J Oral Pathol Med. 2018;47(10):930–7.PubMedCrossRef Wang X, Liu W, Wang P, Li S. RNA interference of long noncoding RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to cisplatin in oral squamous cell carcinoma. J Oral Pathol Med. 2018;47(10):930–7.PubMedCrossRef
121.
go back to reference Von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H, Wanner G, et al. Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition. J Biol Chem. 2013;288(2):1385–96.CrossRef Von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H, Wanner G, et al. Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition. J Biol Chem. 2013;288(2):1385–96.CrossRef
122.
go back to reference Whitton B, Okamoto H, Packham G, Crabb SJ. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med. 2018;7(8):3800–11.PubMedPubMedCentralCrossRef Whitton B, Okamoto H, Packham G, Crabb SJ. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med. 2018;7(8):3800–11.PubMedPubMedCentralCrossRef
123.
go back to reference McGuire C, Cotter K, Stransky L, Forgac M. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta. 2016;1857(8):1213–8.PubMedPubMedCentralCrossRef McGuire C, Cotter K, Stransky L, Forgac M. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta. 2016;1857(8):1213–8.PubMedPubMedCentralCrossRef
124.
go back to reference Mauvezin C, Nagy P, Juhász G, Neufeld TP. Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun. 2015;6(1):7007.PubMedCrossRef Mauvezin C, Nagy P, Juhász G, Neufeld TP. Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun. 2015;6(1):7007.PubMedCrossRef
125.
go back to reference Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, et al. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell. 2017;43(6):716.PubMedCrossRef Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, et al. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell. 2017;43(6):716.PubMedCrossRef
126.
go back to reference Yao X, Chen H, Xu B, Lu J, Gu J, Chen F, et al. The ATPase subunit of ATP6V1C1 inhibits autophagy and enhances radiotherapy resistance in esophageal squamous cell carcinoma. Gene. 2021;768: 145261.PubMedCrossRef Yao X, Chen H, Xu B, Lu J, Gu J, Chen F, et al. The ATPase subunit of ATP6V1C1 inhibits autophagy and enhances radiotherapy resistance in esophageal squamous cell carcinoma. Gene. 2021;768: 145261.PubMedCrossRef
Metadata
Title
Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: new insights
Authors
Ahmadreza Lagzian
Marziye Askari
Melika Sadat Haeri
Nastaran Sheikhi
Sara Banihashemi
Mohsen Nabi-Afjadi
Yalda Malekzadegan
Publication date
01-05-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 5/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02313-9

Other articles of this Issue 5/2024

Medical Oncology 5/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine