Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Cytostatic Therapy | Review

Chemoprotective and chemosensitizing effects of apigenin on cancer therapy

Authors: Zahra Nozhat, Shabnam Heydarzadeh, Zahra Memariani, Amirhossein Ahmadi

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Therapeutic resistance to radiation and chemotherapy is one of the major obstacles in cancer treatment. Although synthetic radiosensitizers are pragmatic solution to enhance tumor sensitivity, they pose concerns of toxicity and non-specificity. In the last decades, scientists scrutinized novel plant-derived radiosensitizers and chemosensitizers, such as flavones, owing to their substantial physiological effects like low toxicity and non-mutagenic properties on the human cells. The combination therapy with apigenin is potential candidate in cancer therapeutics. This review explicates the combinatorial strategies involving apigenin to overcome drug resistance and boost the anti-cancer properties.

Methods

We selected full-text English papers on international databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect from 1972 up to 2020. The keywords included in the search were: Apigenin, Chemoprotective, Chemosensitizing, Side Effects, and Molecular Mechanisms.

Results

In this review, we focused on combination therapy, particularly with apigenin augmenting the anti-cancer effects of chemo drugs on tumor cells, reduce their side effects, subdue drug resistance, and protect healthy cells. The reviewed research data implies that these co-therapies exhibited a synergistic effect on various cancer cells, where apigenin sensitized the chemo drug through different pathways including a significant reduction in overexpressed genes, AKT phosphorylation, NFκB, inhibition of Nrf2, overexpression of caspases, up-regulation of p53 and MAPK, compared to the monotherapies. Meanwhile, contrary to the chemo drugs alone, combined treatments significantly induced apoptosis in the treated cells.

Conclusion

Briefly, our analysis proposed that the combination therapies with apigenin could suppress the unwanted toxicity of chemotherapeutic agents. It is believed that these expedient results may pave the path for the development of drugs with a high therapeutic index. Nevertheless, human clinical trials are a prerequisite to consider the potential use of apigenin in the prevention and treatment of various cancers. Conclusively, the clinical trials to comprehend the role of apigenin as a chemoprotective agent are still in infancy.

Graphical Abstract

Literature
1.
go back to reference Redondo-Blanco S, Fernández J, Gutiérrez-del-Río I, Villar CJ, Lombó F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol. 2017;8:109.PubMedPubMedCentralCrossRef Redondo-Blanco S, Fernández J, Gutiérrez-del-Río I, Villar CJ, Lombó F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol. 2017;8:109.PubMedPubMedCentralCrossRef
2.
go back to reference Ahmadi A, Shadboorestan A, Nabavi S, Setzer W, Nabavi S. The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr Med Chem. 2015;22(30):3462–71.PubMedCrossRef Ahmadi A, Shadboorestan A, Nabavi S, Setzer W, Nabavi S. The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr Med Chem. 2015;22(30):3462–71.PubMedCrossRef
3.
go back to reference Shokrzadeh M, Habibi E, Shadboorestan A, Chabra A, Ahmadi A: The protective effects of Origanum vulgare L. extract on genetic damage of cyclophosphamide in mice blood lymphocytes using micronucleus test. Pharm Biomed Res 2020. Shokrzadeh M, Habibi E, Shadboorestan A, Chabra A, Ahmadi A: The protective effects of Origanum vulgare L. extract on genetic damage of cyclophosphamide in mice blood lymphocytes using micronucleus test. Pharm Biomed Res 2020.
4.
go back to reference Shokrzadeh M, Ahmadi A, Ramezaninejhad S, Shadboorestan A. Hesperidin, a citrus bioflavonoid, ameliorates genotoxicity-induced by diazinon in human blood lymphocytes. Drug research. 2015;65(02):57–60.PubMed Shokrzadeh M, Ahmadi A, Ramezaninejhad S, Shadboorestan A. Hesperidin, a citrus bioflavonoid, ameliorates genotoxicity-induced by diazinon in human blood lymphocytes. Drug research. 2015;65(02):57–60.PubMed
6.
go back to reference Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N. Dietary polyphenols influence antimetabolite agents: methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines. Oncotarget. 2017;8(62):104877.PubMedPubMedCentralCrossRef Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N. Dietary polyphenols influence antimetabolite agents: methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines. Oncotarget. 2017;8(62):104877.PubMedPubMedCentralCrossRef
7.
go back to reference Pharmacists ASoH-S: Archived from the original on 20 December 2016. In: Retrieved; 2016. Pharmacists ASoH-S: Archived from the original on 20 December 2016. In: Retrieved; 2016.
8.
go back to reference Suzuki M, Shinohara F, Endo M, Sugazaki M, Echigo S, Rikiishi H. Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009;64(2):223–32.PubMedCrossRef Suzuki M, Shinohara F, Endo M, Sugazaki M, Echigo S, Rikiishi H. Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009;64(2):223–32.PubMedCrossRef
9.
go back to reference Shukla S, Gupta S. Apigenin and cancer chemoprevention. In: Bioactive foods in promoting health. Amsterdam: Elsevier; 2010. p. 663–89.CrossRef Shukla S, Gupta S. Apigenin and cancer chemoprevention. In: Bioactive foods in promoting health. Amsterdam: Elsevier; 2010. p. 663–89.CrossRef
10.
go back to reference Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018;413:11–22.PubMedCrossRef Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018;413:11–22.PubMedCrossRef
11.
go back to reference Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: a review. Int J Food Prop. 2017;20(6):1197–238.CrossRef Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: a review. Int J Food Prop. 2017;20(6):1197–238.CrossRef
12.
go back to reference Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules. 2017;22(2):299.PubMedCentralCrossRef Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules. 2017;22(2):299.PubMedCentralCrossRef
13.
go back to reference Michler H, Laakmann G, Wagner H. Development of an LC-MS method for simultaneous quantitation of amentoflavone and biapigenin, the minor and major biflavones from Hypericum perforatum L., in human plasma and its application to real blood. Phytochem Anal. 2011;22(1):42–50.PubMedCrossRef Michler H, Laakmann G, Wagner H. Development of an LC-MS method for simultaneous quantitation of amentoflavone and biapigenin, the minor and major biflavones from Hypericum perforatum L., in human plasma and its application to real blood. Phytochem Anal. 2011;22(1):42–50.PubMedCrossRef
14.
go back to reference Gan L, Ma J, You G, Mai J, Wang Z, Yang R, Xie C, Fei J, Tang L, Zhao J. Glucuronidation and its effect on the bioactivity of amentoflavone, a biflavonoid from Ginkgo biloba leaves. J Pharm Pharmacol. 2020;72(12):1840–53.PubMedCrossRef Gan L, Ma J, You G, Mai J, Wang Z, Yang R, Xie C, Fei J, Tang L, Zhao J. Glucuronidation and its effect on the bioactivity of amentoflavone, a biflavonoid from Ginkgo biloba leaves. J Pharm Pharmacol. 2020;72(12):1840–53.PubMedCrossRef
15.
go back to reference Wang M: Interactions between dietary flavonoid apigenin and human gut microbiota in vitro. Rutgers University-School of Graduate Studies; 2018. Wang M: Interactions between dietary flavonoid apigenin and human gut microbiota in vitro. Rutgers University-School of Graduate Studies; 2018.
16.
go back to reference Kozlowska M, Laudy AE, Przybył J, Ziarno M, Majewska E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol Pharm. 2015;72(4):757–67.PubMed Kozlowska M, Laudy AE, Przybył J, Ziarno M, Majewska E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol Pharm. 2015;72(4):757–67.PubMed
17.
go back to reference Martins BT, Correia da Silva M, Pinto M, Cidade H, Kijjoa A. Marine natural flavonoids: chemistry and biological activities. Nat Prod Res. 2019;33(22):3260–72.PubMedCrossRef Martins BT, Correia da Silva M, Pinto M, Cidade H, Kijjoa A. Marine natural flavonoids: chemistry and biological activities. Nat Prod Res. 2019;33(22):3260–72.PubMedCrossRef
18.
go back to reference Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36–49.PubMedCrossRef Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36–49.PubMedCrossRef
19.
go back to reference Qiao L, Sun Y, Chen R, Fu Y, Zhang W, Li X, Chen J, Shen Y, Ye X. Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PloS ONE. 2014;9(2):e87766.PubMedPubMedCentralCrossRef Qiao L, Sun Y, Chen R, Fu Y, Zhang W, Li X, Chen J, Shen Y, Ye X. Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PloS ONE. 2014;9(2):e87766.PubMedPubMedCentralCrossRef
21.
go back to reference Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed research international. 2019;2019:7010467.PubMedPubMedCentral Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed research international. 2019;2019:7010467.PubMedPubMedCentral
22.
go back to reference Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem. 2020;8:829.PubMedPubMedCentralCrossRef Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem. 2020;8:829.PubMedPubMedCentralCrossRef
23.
go back to reference Zhang S, Yang X, Coburn RA, Morris ME. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol. 2005;70(4):627–39.PubMedCrossRef Zhang S, Yang X, Coburn RA, Morris ME. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol. 2005;70(4):627–39.PubMedCrossRef
24.
go back to reference Gandhi YA, Morris ME. Structure–activity relationships and quantitative structure–activity relationships for breast cancer resistance protein (ABCG2). AAPS J. 2009;11(3):541–52.PubMedPubMedCentralCrossRef Gandhi YA, Morris ME. Structure–activity relationships and quantitative structure–activity relationships for breast cancer resistance protein (ABCG2). AAPS J. 2009;11(3):541–52.PubMedPubMedCentralCrossRef
25.
go back to reference Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 2008;283(6):3349–56.PubMedCrossRef Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 2008;283(6):3349–56.PubMedCrossRef
26.
go back to reference Ou L, Han S, Ding W, Chen Z, Ye Z, Yang H, Zhang G, Lou Y, Chen J-Z, Yu Y. Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives. Mol Diversity. 2011;15(3):665–75.CrossRef Ou L, Han S, Ding W, Chen Z, Ye Z, Yang H, Zhang G, Lou Y, Chen J-Z, Yu Y. Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives. Mol Diversity. 2011;15(3):665–75.CrossRef
27.
go back to reference Singh M, Kaur M, Silakari O. Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem. 2014;84:206–39.PubMedCrossRef Singh M, Kaur M, Silakari O. Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem. 2014;84:206–39.PubMedCrossRef
28.
go back to reference Liu R, Zhang H, Yuan M, Zhou J, Tu Q, Liu J-J, Wang J. Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules. 2013;18(9):11496–511.PubMedPubMedCentralCrossRef Liu R, Zhang H, Yuan M, Zhou J, Tu Q, Liu J-J, Wang J. Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules. 2013;18(9):11496–511.PubMedPubMedCentralCrossRef
29.
go back to reference Hunyadi A, Martins A, Danko B, Chang F-R, Wu Y-C. Protoflavones: a class of unusual flavonoids as promising novel anticancer agents. Phytochem Rev. 2014;13(1):69–77.CrossRef Hunyadi A, Martins A, Danko B, Chang F-R, Wu Y-C. Protoflavones: a class of unusual flavonoids as promising novel anticancer agents. Phytochem Rev. 2014;13(1):69–77.CrossRef
30.
go back to reference Qi Y, Ding Z, Yao Y, Ma D, Ren F, Yang H, Chen A. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Exp Ther Med. 2019;17(3):1670–6.PubMed Qi Y, Ding Z, Yao Y, Ma D, Ren F, Yang H, Chen A. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Exp Ther Med. 2019;17(3):1670–6.PubMed
31.
go back to reference Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol. 2007;30(1):233–45.PubMed Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol. 2007;30(1):233–45.PubMed
32.
go back to reference Shoubaky GAE, Abdel-Daim MM, Mansour MH, Salem EA. Isolation and identification of a flavone apigenin from marine red alga Acanthophora spicifera with antinociceptive and anti-Inflammatory activities. J Exp Neurosci. 2016;10:21–9.PubMedPubMedCentralCrossRef Shoubaky GAE, Abdel-Daim MM, Mansour MH, Salem EA. Isolation and identification of a flavone apigenin from marine red alga Acanthophora spicifera with antinociceptive and anti-Inflammatory activities. J Exp Neurosci. 2016;10:21–9.PubMedPubMedCentralCrossRef
33.
go back to reference Czeczot H, Tudek B, Kusztelak J, Szymczyk T, Dobrowolska B, Glinkowska G, Malinowski J, Strzelecka H. Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutat Res/Genet Toxicol. 1990;240(3):209–16.CrossRef Czeczot H, Tudek B, Kusztelak J, Szymczyk T, Dobrowolska B, Glinkowska G, Malinowski J, Strzelecka H. Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutat Res/Genet Toxicol. 1990;240(3):209–16.CrossRef
34.
go back to reference Birt DF, Walker B, Tibbels MG, Bresnick E. Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis. 1986;7(6):959–63.PubMedCrossRef Birt DF, Walker B, Tibbels MG, Bresnick E. Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis. 1986;7(6):959–63.PubMedCrossRef
35.
go back to reference Banerjee K, Banerjee S, Das S, Mandal M. Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss. J Colloid Interface Sci. 2015;453:48–59.CrossRefPubMed Banerjee K, Banerjee S, Das S, Mandal M. Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss. J Colloid Interface Sci. 2015;453:48–59.CrossRefPubMed
36.
37.
go back to reference Tsuji P, Walle T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem Biol Interact. 2008;171(1):37–44.PubMedCrossRef Tsuji P, Walle T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem Biol Interact. 2008;171(1):37–44.PubMedCrossRef
38.
go back to reference Meyer H, Bolarinwa A, Wolfram G, Linseisen J. Bioavailability of apigenin from apiin-rich parsley in humans. Ann Nutr Metab. 2006;50(3):167–72.PubMedCrossRef Meyer H, Bolarinwa A, Wolfram G, Linseisen J. Bioavailability of apigenin from apiin-rich parsley in humans. Ann Nutr Metab. 2006;50(3):167–72.PubMedCrossRef
39.
go back to reference Nielsen S, Young J, Daneshvar B, Lauridsen S, Knuthsen P, Sandström B, Dragsted LO. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81(6):447–55.PubMedCrossRef Nielsen S, Young J, Daneshvar B, Lauridsen S, Knuthsen P, Sandström B, Dragsted LO. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81(6):447–55.PubMedCrossRef
40.
go back to reference Gradolatto A, Basly J-P, Berges R, Teyssier C, Chagnon M-C, Siess M-H, Canivenc-Lavier M-C. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos. 2005;33(1):49–54.PubMedCrossRef Gradolatto A, Basly J-P, Berges R, Teyssier C, Chagnon M-C, Siess M-H, Canivenc-Lavier M-C. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos. 2005;33(1):49–54.PubMedCrossRef
41.
go back to reference Griffiths L, Smith G. Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J. 1972;128(4):901–11.PubMedPubMedCentralCrossRef Griffiths L, Smith G. Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J. 1972;128(4):901–11.PubMedPubMedCentralCrossRef
42.
go back to reference Pforte H, Hempel J, Jacobasch G. Distribution pattern of a flavonoid extract in the gastrointestinal lumen and wall of rats. Food Nahrung. 1999;43(3):205–8.CrossRef Pforte H, Hempel J, Jacobasch G. Distribution pattern of a flavonoid extract in the gastrointestinal lumen and wall of rats. Food Nahrung. 1999;43(3):205–8.CrossRef
43.
go back to reference Ding S, Zhang Z, Song J, Cheng X, Jiang J, Jia X. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int J Nanomed. 2014;9:2327.CrossRef Ding S, Zhang Z, Song J, Cheng X, Jiang J, Jia X. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int J Nanomed. 2014;9:2327.CrossRef
44.
go back to reference Tang D, Chen K, Huang L, Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin Drug Metab Toxicol. 2017;13(3):323–30.PubMedCrossRef Tang D, Chen K, Huang L, Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin Drug Metab Toxicol. 2017;13(3):323–30.PubMedCrossRef
45.
go back to reference Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304(3):1228–35.PubMedCrossRef Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304(3):1228–35.PubMedCrossRef
46.
go back to reference Yasumatsu R, Nakashima T, Uryu H, Masuda M, Hirakawa N, Shiratsuchi H, Tomita K, Fukushima M, Komune S. The role of dihydropyrimidine dehydrogenase expression in resistance to 5-fluorouracil in head and neck squamous cell carcinoma cells. Oral Oncol. 2009;45(2):141–7.PubMedCrossRef Yasumatsu R, Nakashima T, Uryu H, Masuda M, Hirakawa N, Shiratsuchi H, Tomita K, Fukushima M, Komune S. The role of dihydropyrimidine dehydrogenase expression in resistance to 5-fluorouracil in head and neck squamous cell carcinoma cells. Oral Oncol. 2009;45(2):141–7.PubMedCrossRef
47.
go back to reference Choi EJ, Kim G-H. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep. 2009;22(6):1533–7.PubMedCrossRef Choi EJ, Kim G-H. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep. 2009;22(6):1533–7.PubMedCrossRef
48.
go back to reference Way T-D, Kao M-C, Lin J-K. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005;579(1):145–52.PubMedCrossRef Way T-D, Kao M-C, Lin J-K. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005;579(1):145–52.PubMedCrossRef
49.
go back to reference Nozhat Z, Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Mol Diagn Ther. 2016;20(1):13–26.PubMedCrossRef Nozhat Z, Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Mol Diagn Ther. 2016;20(1):13–26.PubMedCrossRef
50.
go back to reference Lee W-J, Chen W-K, Wang C-J, Lin W-L, Tseng T-H. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. 2008;226(2):178–91.PubMedCrossRef Lee W-J, Chen W-K, Wang C-J, Lin W-L, Tseng T-H. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. 2008;226(2):178–91.PubMedCrossRef
51.
go back to reference Chan L-P, Chou T-H, Ding H-Y, Chen P-R, Chiang F-Y, Kuo P-L, Liang C-H. Apigenin induces apoptosis via tumor necrosis factor receptor-and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochimica et Biophysica Acta. 2012;1820(7):1081–91.PubMedCrossRef Chan L-P, Chou T-H, Ding H-Y, Chen P-R, Chiang F-Y, Kuo P-L, Liang C-H. Apigenin induces apoptosis via tumor necrosis factor receptor-and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochimica et Biophysica Acta. 2012;1820(7):1081–91.PubMedCrossRef
52.
go back to reference Johnson JL, de Mejia EG. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol. 2013;60:83–91.PubMedCrossRef Johnson JL, de Mejia EG. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol. 2013;60:83–91.PubMedCrossRef
53.
go back to reference Hu XY, Liang JY, Guo XJ, Liu L, Guo YB. 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma. Clin Exp Pharmacol Physiol. 2015;42(2):146–53.PubMedCrossRef Hu XY, Liang JY, Guo XJ, Liu L, Guo YB. 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma. Clin Exp Pharmacol Physiol. 2015;42(2):146–53.PubMedCrossRef
54.
go back to reference Gaballah HH, Gaber RA, Mohamed DA. Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: crosstalk between apoptotic and JNK-mediated autophagic cell death platforms. Toxicol Appl Pharmacol. 2017;316:27–35.PubMedCrossRef Gaballah HH, Gaber RA, Mohamed DA. Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: crosstalk between apoptotic and JNK-mediated autophagic cell death platforms. Toxicol Appl Pharmacol. 2017;316:27–35.PubMedCrossRef
56.
go back to reference Jung YY, Lee YK, Koo JS. The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer. Expert Opin Ther Targets. 2016;20(2):167–78.PubMedCrossRef Jung YY, Lee YK, Koo JS. The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer. Expert Opin Ther Targets. 2016;20(2):167–78.PubMedCrossRef
57.
go back to reference Yang C, Pan Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumor Biology. 2016;37(12):15489–94.CrossRef Yang C, Pan Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumor Biology. 2016;37(12):15489–94.CrossRef
58.
go back to reference Goodwin C, Rossanese O, Olejniczak E, Fesik S. Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ. 2015;22(12):2098–106.PubMedPubMedCentralCrossRef Goodwin C, Rossanese O, Olejniczak E, Fesik S. Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ. 2015;22(12):2098–106.PubMedPubMedCentralCrossRef
59.
go back to reference García-Foncillas J, Sunakawa Y, Aderka D, Wainberg Z, Ronga P, Witzler P, Stintzing S. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol. 2019;9:849.PubMedPubMedCentralCrossRef García-Foncillas J, Sunakawa Y, Aderka D, Wainberg Z, Ronga P, Witzler P, Stintzing S. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol. 2019;9:849.PubMedPubMedCentralCrossRef
60.
go back to reference Ocvirk J, Cencelj S. Management of cutaneous side-effects of cetuximab therapy in patients with metastatic colorectal cancer. J Eur Acad Dermatol Venereol. 2010;24(4):453–9.PubMedCrossRef Ocvirk J, Cencelj S. Management of cutaneous side-effects of cetuximab therapy in patients with metastatic colorectal cancer. J Eur Acad Dermatol Venereol. 2010;24(4):453–9.PubMedCrossRef
61.
go back to reference Boeckx C, de Beeck KO, Wouters A, Deschoolmeester V, Limame R, Zwaenepoel K, Specenier P, Pauwels P, Vermorken JB, Peeters M. Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP proteins. Cancer Lett. 2014;354(2):365–77.PubMedCrossRef Boeckx C, de Beeck KO, Wouters A, Deschoolmeester V, Limame R, Zwaenepoel K, Specenier P, Pauwels P, Vermorken JB, Peeters M. Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP proteins. Cancer Lett. 2014;354(2):365–77.PubMedCrossRef
62.
go back to reference Ameyar M, Wisniewska M, Weitzman J. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85(8):747–52.PubMedCrossRef Ameyar M, Wisniewska M, Weitzman J. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85(8):747–52.PubMedCrossRef
63.
go back to reference Boeckx C, Blockx L, de Beeck KO, Limame R, Van Camp G, Peeters M, Vermorken JB, Specenier P, Wouters A, Baay M. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. Am J Cancer Res. 2015;5(6):1921.PubMedPubMedCentral Boeckx C, Blockx L, de Beeck KO, Limame R, Van Camp G, Peeters M, Vermorken JB, Specenier P, Wouters A, Baay M. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. Am J Cancer Res. 2015;5(6):1921.PubMedPubMedCentral
64.
go back to reference Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366–75.PubMedCrossRef Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366–75.PubMedCrossRef
65.
go back to reference Briggs JJ, Haugen MH, Johansen HT, Riker AI, Abrahamson M, Fodstad Ø, Mælandsmo GM, Solberg R. Cystatin E/M suppresses legumain activity and invasion of human melanoma. BMC Cancer. 2010;10(1):17.PubMedPubMedCentralCrossRef Briggs JJ, Haugen MH, Johansen HT, Riker AI, Abrahamson M, Fodstad Ø, Mælandsmo GM, Solberg R. Cystatin E/M suppresses legumain activity and invasion of human melanoma. BMC Cancer. 2010;10(1):17.PubMedPubMedCentralCrossRef
66.
go back to reference Baines K, Renaud S. Transcription factors that regulate trophoblast development and function. In: Progress in molecular biology and translational science, vol. 145. Amsterdam: Elsevier; 2017. p. 39–88. Baines K, Renaud S. Transcription factors that regulate trophoblast development and function. In: Progress in molecular biology and translational science, vol. 145. Amsterdam: Elsevier; 2017. p. 39–88.
67.
go back to reference Zhang X, Wu J, Luo S, Lechler T, Zhang JY. FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget. 2016;7(23):34371.PubMedPubMedCentralCrossRef Zhang X, Wu J, Luo S, Lechler T, Zhang JY. FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget. 2016;7(23):34371.PubMedPubMedCentralCrossRef
68.
go back to reference Pavón MA, Arroyo-Solera I, Céspedes MV, Casanova I, León X, Mangues R. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget. 2016;7(35):57351.PubMedPubMedCentralCrossRef Pavón MA, Arroyo-Solera I, Céspedes MV, Casanova I, León X, Mangues R. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget. 2016;7(35):57351.PubMedPubMedCentralCrossRef
69.
go back to reference Vechio AMCD, Giudice FS, Sperandio FF, Mantesso A, Pinto Junior DS. Vimentin expression and the influence of Matrigel in cell lines of head and neck squamous cell carcinoma. Brazil Oral Res. 2011;25(3):235–40.CrossRef Vechio AMCD, Giudice FS, Sperandio FF, Mantesso A, Pinto Junior DS. Vimentin expression and the influence of Matrigel in cell lines of head and neck squamous cell carcinoma. Brazil Oral Res. 2011;25(3):235–40.CrossRef
70.
go back to reference Hu W-J, Liu J, Zhong L-K, Wang J. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling. Biomed Pharmacother. 2018;102:681–8.PubMedCrossRef Hu W-J, Liu J, Zhong L-K, Wang J. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling. Biomed Pharmacother. 2018;102:681–8.PubMedCrossRef
71.
go back to reference Ma BB, Poon TC, To K, Zee B, Mo FK, Chan CM, Ho S, Teo PM, Johnson PJ, Chan AT. Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma—a prospective study. Head Neck. 2003;25(10):864–72.PubMedCrossRef Ma BB, Poon TC, To K, Zee B, Mo FK, Chan CM, Ho S, Teo PM, Johnson PJ, Chan AT. Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma—a prospective study. Head Neck. 2003;25(10):864–72.PubMedCrossRef
72.
go back to reference Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002;20(18):1s–13s.PubMed Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002;20(18):1s–13s.PubMed
73.
go back to reference Barabas K, Milner R, Lurie D, Adin C. Cisplatin: a review of toxicities and therapeutic applications. Vet Compar Oncol. 2008;6(1):1–18.CrossRef Barabas K, Milner R, Lurie D, Adin C. Cisplatin: a review of toxicities and therapeutic applications. Vet Compar Oncol. 2008;6(1):1–18.CrossRef
76.
go back to reference Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.PubMedCrossRef Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.PubMedCrossRef
77.
go back to reference Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287(4):914–20.PubMedCrossRef Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287(4):914–20.PubMedCrossRef
78.
go back to reference Ju SM, Kang JG, Bae JS, Pae HO, Lyu YS, Jeon BH. The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3K/Akt pathway in human renal proximal tubular epithelial cells. Evid Based Complementary Altern Med. 2015;2015:186436.CrossRef Ju SM, Kang JG, Bae JS, Pae HO, Lyu YS, Jeon BH. The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3K/Akt pathway in human renal proximal tubular epithelial cells. Evid Based Complementary Altern Med. 2015;2015:186436.CrossRef
79.
go back to reference Liu R, Ji P, Liu B, Qiao H, Wang X, Zhou L, Deng T, Ba Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett. 2017;13(2):1024–30.PubMedCrossRef Liu R, Ji P, Liu B, Qiao H, Wang X, Zhou L, Deng T, Ba Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett. 2017;13(2):1024–30.PubMedCrossRef
80.
go back to reference He X, Li C, Wei Z, Wang J, Kou J, Liu W, Shi M, Yang Z, Fu Y. Protective role of apigenin in cisplatin-induced renal injury. Eur J Pharmacol. 2016;789:215–21.PubMedCrossRef He X, Li C, Wei Z, Wang J, Kou J, Liu W, Shi M, Yang Z, Fu Y. Protective role of apigenin in cisplatin-induced renal injury. Eur J Pharmacol. 2016;789:215–21.PubMedCrossRef
81.
go back to reference Lu Y, Cederbaum AI. Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice: Role of cytochrome P450 2E1 and 2A5. Hepatology. 2006;44(1):263–74.PubMedCrossRef Lu Y, Cederbaum AI. Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice: Role of cytochrome P450 2E1 and 2A5. Hepatology. 2006;44(1):263–74.PubMedCrossRef
82.
go back to reference Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol. 2017;55(1):766–74.PubMedPubMedCentralCrossRef Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol. 2017;55(1):766–74.PubMedPubMedCentralCrossRef
83.
go back to reference Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87(4):595–600.PubMedCrossRef Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87(4):595–600.PubMedCrossRef
84.
go back to reference Xu Y-Y, Wu T-T, Zhou S-H, Bao Y-Y, Wang Q-Y, Fan J, Huang Y-P. Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study. Int J Clin Exp Pathol. 2014;7(7):3938.PubMedPubMedCentral Xu Y-Y, Wu T-T, Zhou S-H, Bao Y-Y, Wang Q-Y, Fan J, Huang Y-P. Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study. Int J Clin Exp Pathol. 2014;7(7):3938.PubMedPubMedCentral
85.
go back to reference Aziz NA, Froemming GRA, Kadir SHSA, Ibahim MJ: Apigenin increases cisplatin inhibitory effects on the telomerase activity of triple negative breast cancer cells. Jurnal Teknologi 2018, 80(1). Aziz NA, Froemming GRA, Kadir SHSA, Ibahim MJ: Apigenin increases cisplatin inhibitory effects on the telomerase activity of triple negative breast cancer cells. Jurnal Teknologi 2018, 80(1).
86.
go back to reference Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother. 2017;88:210–7.PubMedCrossRef Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother. 2017;88:210–7.PubMedCrossRef
87.
go back to reference Qi Y, Ding Z, Yao Y, Ren F, Yin M, Yang S, Chen A. Apigenin induces apoptosis and counteracts cisplatin-induced chemoresistance via Mcl-1 in ovarian cancer cells. Exp Ther Med. 2020;20(2):1329–36.PubMedPubMedCentralCrossRef Qi Y, Ding Z, Yao Y, Ren F, Yin M, Yang S, Chen A. Apigenin induces apoptosis and counteracts cisplatin-induced chemoresistance via Mcl-1 in ovarian cancer cells. Exp Ther Med. 2020;20(2):1329–36.PubMedPubMedCentralCrossRef
88.
go back to reference Kelly GL, Strasser A. Toward targeting antiapoptotic MCL-1 for cancer therapy. Annu Rev Cancer Biol. 2020;4:299–313.CrossRef Kelly GL, Strasser A. Toward targeting antiapoptotic MCL-1 for cancer therapy. Annu Rev Cancer Biol. 2020;4:299–313.CrossRef
89.
go back to reference Li Q, Li L, Zhao X, Cheng Z, Ma J. Apigenin induces apoptosis and reverses the drug resistance of ovarian cancer cells. Int J Clin Exp Med. 2020;13(3):1987–94. Li Q, Li L, Zhao X, Cheng Z, Ma J. Apigenin induces apoptosis and reverses the drug resistance of ovarian cancer cells. Int J Clin Exp Med. 2020;13(3):1987–94.
90.
go back to reference Larson RA. Etiology and management of therapy-related myeloid leukemia. Hematology. 2007;2007(1):453–9.CrossRef Larson RA. Etiology and management of therapy-related myeloid leukemia. Hematology. 2007;2007(1):453–9.CrossRef
91.
go back to reference Bokulić A, Garaj-Vrhovac V, Brajša K, Ðurić K, Glojnarić I, Šitum K. The effect of apigenin on cyclophosphamide and doxorubicin genotoxicity in vitro and in vivo. J Environ Sci Health Part A. 2011;46(5):526–33.CrossRef Bokulić A, Garaj-Vrhovac V, Brajša K, Ðurić K, Glojnarić I, Šitum K. The effect of apigenin on cyclophosphamide and doxorubicin genotoxicity in vitro and in vivo. J Environ Sci Health Part A. 2011;46(5):526–33.CrossRef
92.
go back to reference Mahbub AA, Le Maitre CL, Haywood-Small S, Cross NA, Jordan-Mahy N. Polyphenols enhance the activity of alkylating agents in leukaemia cell lines. Oncotarget. 2019;10(44):4570.PubMedPubMedCentralCrossRef Mahbub AA, Le Maitre CL, Haywood-Small S, Cross NA, Jordan-Mahy N. Polyphenols enhance the activity of alkylating agents in leukaemia cell lines. Oncotarget. 2019;10(44):4570.PubMedPubMedCentralCrossRef
93.
go back to reference Arora I, Sharma M, Tollefsbol TO. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Sci. 2019;20(18):4567.PubMedCentralCrossRef Arora I, Sharma M, Tollefsbol TO. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Sci. 2019;20(18):4567.PubMedCentralCrossRef
94.
go back to reference Gao A-M, Ke Z-P, Wang J-N, Yang J-Y, Chen S-Y, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis. 2013;34(8):1806–14.PubMedCrossRef Gao A-M, Ke Z-P, Wang J-N, Yang J-Y, Chen S-Y, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis. 2013;34(8):1806–14.PubMedCrossRef
95.
go back to reference Gao A-M, Zhang X-Y, Ke Z-P. Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway. Oncotarget. 2017;8(47):82085.PubMedPubMedCentralCrossRef Gao A-M, Zhang X-Y, Ke Z-P. Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway. Oncotarget. 2017;8(47):82085.PubMedPubMedCentralCrossRef
96.
go back to reference Gao A-M, Zhang X-Y, Hu J-N, Ke Z-P. Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis. Chem Biol Interact. 2018;280:45–50.PubMedCrossRef Gao A-M, Zhang X-Y, Hu J-N, Ke Z-P. Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis. Chem Biol Interact. 2018;280:45–50.PubMedCrossRef
97.
go back to reference Shen K, Cui D, Sun L, Lu Y, Han M, Liu J. Inhibition of IGF-IR increases chemosensitivity in human colorectal cancer cells through MRP-2 promoter suppression. J Cell Biochem. 2012;113(6):2086–97.PubMedCrossRef Shen K, Cui D, Sun L, Lu Y, Han M, Liu J. Inhibition of IGF-IR increases chemosensitivity in human colorectal cancer cells through MRP-2 promoter suppression. J Cell Biochem. 2012;113(6):2086–97.PubMedCrossRef
98.
go back to reference Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, Biswal S. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther. 2010;9(2):336–46.PubMedPubMedCentralCrossRef Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, Biswal S. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther. 2010;9(2):336–46.PubMedPubMedCentralCrossRef
99.
go back to reference Leung CH, Caldarone CA, Guan R, Wen X-Y, Ailenberg M, Kapus A, Szaszi K, Rotstein OD. Nuclear factor (erythroid-derived 2)-like 2 regulates the hepatoprotective effects of remote ischemic conditioning in hemorrhagic shock. Antioxid Redox Signal. 2019;30(14):1760–73.PubMedCrossRef Leung CH, Caldarone CA, Guan R, Wen X-Y, Ailenberg M, Kapus A, Szaszi K, Rotstein OD. Nuclear factor (erythroid-derived 2)-like 2 regulates the hepatoprotective effects of remote ischemic conditioning in hemorrhagic shock. Antioxid Redox Signal. 2019;30(14):1760–73.PubMedCrossRef
100.
go back to reference Korga A, Ostrowska M, Jozefczyk A, Iwan M, Wojcik R, Zgorka G, Herbet M, Vilarrubla GG, Dudka J. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol Toxicol. 2019;20(1):1–13.CrossRef Korga A, Ostrowska M, Jozefczyk A, Iwan M, Wojcik R, Zgorka G, Herbet M, Vilarrubla GG, Dudka J. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol Toxicol. 2019;20(1):1–13.CrossRef
101.
go back to reference Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, Gao AC. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther. 2013;12(9):1829–36.PubMedPubMedCentralCrossRef Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, Gao AC. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther. 2013;12(9):1829–36.PubMedPubMedCentralCrossRef
102.
go back to reference Vendelbo J, Olesen RH, Lauridsen JK, Rungby J, Kleinman J, Hyde T, Larsen A. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians. Pharmacogenomics J. 2018;18(1):121–6.PubMedCrossRef Vendelbo J, Olesen RH, Lauridsen JK, Rungby J, Kleinman J, Hyde T, Larsen A. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians. Pharmacogenomics J. 2018;18(1):121–6.PubMedCrossRef
103.
go back to reference Angelini A, Di CI, Castellani M, Conti P, Cuccurullo F. Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5): implications for natural sedatives as chemosensitizing agents in cancer therapy. J Biol Regul Homeost Agents. 2010;24(2):197–205.PubMed Angelini A, Di CI, Castellani M, Conti P, Cuccurullo F. Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5): implications for natural sedatives as chemosensitizing agents in cancer therapy. J Biol Regul Homeost Agents. 2010;24(2):197–205.PubMed
104.
go back to reference Seo HS, Ku JM, Choi HS, Woo JK, Lee BH, Kim DS, Song HJ, Jang BH, Shin YC, Ko SG. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol Rep. 2017;38(2):715–24.PubMedPubMedCentralCrossRef Seo HS, Ku JM, Choi HS, Woo JK, Lee BH, Kim DS, Song HJ, Jang BH, Shin YC, Ko SG. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol Rep. 2017;38(2):715–24.PubMedPubMedCentralCrossRef
105.
go back to reference Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N. Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines. Cell Death Discov. 2015;1(1):1–12.CrossRef Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N. Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines. Cell Death Discov. 2015;1(1):1–12.CrossRef
106.
go back to reference Yu W, Sun H, Zha W, Cui W, Xu L, Min Q, Wu J: Apigenin attenuates adriamycin-induced cardiomyocyte apoptosis via the PI3K/AKT/mTOR pathway. Evidence-Based Complementary and Alternative Medicine 2017, 2017. Yu W, Sun H, Zha W, Cui W, Xu L, Min Q, Wu J: Apigenin attenuates adriamycin-induced cardiomyocyte apoptosis via the PI3K/AKT/mTOR pathway. Evidence-Based Complementary and Alternative Medicine 2017, 2017.
107.
go back to reference Zare MFR, Rakhshan K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, Azizi Y. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci. 2019;232:116623.PubMedCrossRef Zare MFR, Rakhshan K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, Azizi Y. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci. 2019;232:116623.PubMedCrossRef
108.
go back to reference Ittiudomrak T, Puthong S, Roytrakul S, Chanchao C. α-mangostin and apigenin induced cell cycle arrest and programmed cell death in SKOV-3 ovarian cancer cells. Toxicol Res. 2019;35(2):167–79.PubMedPubMedCentralCrossRef Ittiudomrak T, Puthong S, Roytrakul S, Chanchao C. α-mangostin and apigenin induced cell cycle arrest and programmed cell death in SKOV-3 ovarian cancer cells. Toxicol Res. 2019;35(2):167–79.PubMedPubMedCentralCrossRef
109.
go back to reference Jain A, Kwong LN, Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options Oncol. 2016;17(11):58.PubMedCrossRef Jain A, Kwong LN, Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options Oncol. 2016;17(11):58.PubMedCrossRef
110.
go back to reference Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005;1(1):7–17.PubMedCrossRef Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005;1(1):7–17.PubMedCrossRef
111.
go back to reference Lee SH, Ryu JK, Lee K-Y, Woo SM, Park JK, Yoo JW, Kim Y-T, Yoon YB. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008;259(1):39–49.PubMedCrossRef Lee SH, Ryu JK, Lee K-Y, Woo SM, Park JK, Yoo JW, Kim Y-T, Yoon YB. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008;259(1):39–49.PubMedCrossRef
112.
go back to reference Strouch MJ, Milam BM, Melstrom LG, McGill JJ, Salabat MR, Ujiki MB, Ding X-Z, Bentrem DJ. The flavonoid apigenin potentiates the growth inhibitory effects of gemcitabine and abrogates gemcitabine resistance in human pancreatic cancer cells. Pancreas. 2009;38(4):409–15.PubMedCrossRef Strouch MJ, Milam BM, Melstrom LG, McGill JJ, Salabat MR, Ujiki MB, Ding X-Z, Bentrem DJ. The flavonoid apigenin potentiates the growth inhibitory effects of gemcitabine and abrogates gemcitabine resistance in human pancreatic cancer cells. Pancreas. 2009;38(4):409–15.PubMedCrossRef
113.
go back to reference Giri MK. Aboveground forest biomass modeling using remote sensing and FIA Data in Tennessee. USA: Tennessee State University; 2018. Giri MK. Aboveground forest biomass modeling using remote sensing and FIA Data in Tennessee. USA: Tennessee State University; 2018.
114.
go back to reference Choi S-J, Choi J-S. The promotive effects of antioxidative apigenin on the bioavailability of paclitaxel for oral delivery in rats. Biomol Ther. 2010;18(4):469–76.CrossRef Choi S-J, Choi J-S. The promotive effects of antioxidative apigenin on the bioavailability of paclitaxel for oral delivery in rats. Biomol Ther. 2010;18(4):469–76.CrossRef
115.
go back to reference Kumar KK, Priyanka L, Gnananath K, Babu PR, Sujatha S. Pharmacokinetic drug interactions between apigenin, rutin and paclitaxel mediated by P-glycoprotein in rats. Eur J Drug Metab Pharmacokinet. 2015;40(3):267–76.PubMedCrossRef Kumar KK, Priyanka L, Gnananath K, Babu PR, Sujatha S. Pharmacokinetic drug interactions between apigenin, rutin and paclitaxel mediated by P-glycoprotein in rats. Eur J Drug Metab Pharmacokinet. 2015;40(3):267–76.PubMedCrossRef
116.
go back to reference Xu Y, Xin Y, Diao Y, Lu C, Fu J, Luo L, Yin Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PloS ONE. 2011;6(12):e29169.PubMedPubMedCentralCrossRef Xu Y, Xin Y, Diao Y, Lu C, Fu J, Luo L, Yin Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PloS ONE. 2011;6(12):e29169.PubMedPubMedCentralCrossRef
117.
go back to reference Li K, Li M, Luo Z, Mao Y, Yu Y, He Y, Zhou J, Fei Y, Pei Y, Cai K. Overcoming the hypoxia-induced drug resistance in liver tumor by the concurrent use of apigenin and paclitaxel. Biochem Biophys Res Commun. 2020;526(2):321–7.PubMedCrossRef Li K, Li M, Luo Z, Mao Y, Yu Y, He Y, Zhou J, Fei Y, Pei Y, Cai K. Overcoming the hypoxia-induced drug resistance in liver tumor by the concurrent use of apigenin and paclitaxel. Biochem Biophys Res Commun. 2020;526(2):321–7.PubMedCrossRef
118.
go back to reference Pal MK, Jaiswar SP, Dwivedi A, Goyal S, Dwivedi VN, Pathak AK, Kumar V, Sankhwar PL, Ray RS. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): a ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anti-Cancer Agents Med Chem. 2017;17(12):1721–32. Pal MK, Jaiswar SP, Dwivedi A, Goyal S, Dwivedi VN, Pathak AK, Kumar V, Sankhwar PL, Ray RS. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): a ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anti-Cancer Agents Med Chem. 2017;17(12):1721–32.
119.
go back to reference Lang L. FDA approves sorafenib for patients with inoperable liver cancer. Gastroenterology. 2008;134(2):379.PubMed Lang L. FDA approves sorafenib for patients with inoperable liver cancer. Gastroenterology. 2008;134(2):379.PubMed
120.
go back to reference Şirin N, Elmas L, Seçme M, Dodurga Y. Investigation of possible effects of apigenin, sorafenib and combined applications on apoptosis and cell cycle in hepatocellular cancer cells. Gene. 2020;737:144428.PubMedCrossRef Şirin N, Elmas L, Seçme M, Dodurga Y. Investigation of possible effects of apigenin, sorafenib and combined applications on apoptosis and cell cycle in hepatocellular cancer cells. Gene. 2020;737:144428.PubMedCrossRef
121.
go back to reference Zhou J, Li W, Ming J, Yang W, Lu L, Zhang Q, Ruan S, Huang T. High expression of TRAF4 predicts poor prognosis in tamoxifen-treated breast cancer and promotes tamoxifen resistance. Anticancer Drugs. 2020;31(6):558–66.PubMedCrossRef Zhou J, Li W, Ming J, Yang W, Lu L, Zhang Q, Ruan S, Huang T. High expression of TRAF4 predicts poor prognosis in tamoxifen-treated breast cancer and promotes tamoxifen resistance. Anticancer Drugs. 2020;31(6):558–66.PubMedCrossRef
122.
go back to reference Vanitha Samuel PN: Modifying role of apigenin in angiogenesis and anti-oxidant status in experimentally induced breast cancer in rats. International Journal of Basic & Clinical Pharmacology 2015, 4(6). Vanitha Samuel PN: Modifying role of apigenin in angiogenesis and anti-oxidant status in experimentally induced breast cancer in rats. International Journal of Basic & Clinical Pharmacology 2015, 4(6).
123.
go back to reference Long X, Fan M, Bigsby RM, Nephew KP. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-α-dependent and estrogen receptor-α-independent mechanisms. Mol Cancer Ther. 2008;7(7):2096–108.PubMedPubMedCentralCrossRef Long X, Fan M, Bigsby RM, Nephew KP. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-α-dependent and estrogen receptor-α-independent mechanisms. Mol Cancer Ther. 2008;7(7):2096–108.PubMedPubMedCentralCrossRef
124.
go back to reference Saha RP, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Sharma AR, Lee S-S, Chakraborty C. Repurposing drugs, ongoing vaccine and new therapeutic development initiatives against COVID-19. Front Pharmacol. 2020;11:1258.PubMedPubMedCentralCrossRef Saha RP, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Sharma AR, Lee S-S, Chakraborty C. Repurposing drugs, ongoing vaccine and new therapeutic development initiatives against COVID-19. Front Pharmacol. 2020;11:1258.PubMedPubMedCentralCrossRef
125.
go back to reference Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, Huang X, Jin J. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer. 2020;11(8):2123.PubMedPubMedCentralCrossRef Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, Huang X, Jin J. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer. 2020;11(8):2123.PubMedPubMedCentralCrossRef
127.
go back to reference Oishi M, Iizumi Y, Taniguchi T, Goi W, Miki T, Sakai T. Apigenin sensitizes prostate cancer cells to Apo2L/TRAIL by targeting adenine nucleotide translocase-2. PLoS ONE. 2013;8(2):e55922.PubMedPubMedCentralCrossRef Oishi M, Iizumi Y, Taniguchi T, Goi W, Miki T, Sakai T. Apigenin sensitizes prostate cancer cells to Apo2L/TRAIL by targeting adenine nucleotide translocase-2. PLoS ONE. 2013;8(2):e55922.PubMedPubMedCentralCrossRef
128.
go back to reference Zhang W, Wei Y, Yu D, Xu J, Peng J. Gefitinib provides similar effectiveness and improved safety than erlotinib for east Asian populations with advanced non–small cell lung cancer: a meta-analysis. BMC Cancer. 2018;18(1):780.PubMedPubMedCentralCrossRef Zhang W, Wei Y, Yu D, Xu J, Peng J. Gefitinib provides similar effectiveness and improved safety than erlotinib for east Asian populations with advanced non–small cell lung cancer: a meta-analysis. BMC Cancer. 2018;18(1):780.PubMedPubMedCentralCrossRef
129.
go back to reference Chen Z, Tian D, Liao X, Zhang Y, Xiao J, Chen W, Liu Q, Chen Y, Li D, Zhu L. Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of HIF-1α, c-Myc, p-EGFR, and glucose metabolism in EGFR L858R+ T790M-mutated H1975 cells. Front Pharmacol. 2019;10:260.PubMedPubMedCentralCrossRef Chen Z, Tian D, Liao X, Zhang Y, Xiao J, Chen W, Liu Q, Chen Y, Li D, Zhu L. Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of HIF-1α, c-Myc, p-EGFR, and glucose metabolism in EGFR L858R+ T790M-mutated H1975 cells. Front Pharmacol. 2019;10:260.PubMedPubMedCentralCrossRef
130.
go back to reference Yang P-M, Chou C-J, Tseng S-H, Hung C-F. Bioinformatics and in vitro experimental analyses identify the selective therapeutic potential of interferon gamma and apigenin against cervical squamous cell carcinoma and adenocarcinoma. Oncotarget. 2017;8(28):46145.PubMedPubMedCentralCrossRef Yang P-M, Chou C-J, Tseng S-H, Hung C-F. Bioinformatics and in vitro experimental analyses identify the selective therapeutic potential of interferon gamma and apigenin against cervical squamous cell carcinoma and adenocarcinoma. Oncotarget. 2017;8(28):46145.PubMedPubMedCentralCrossRef
131.
go back to reference Kanarek N, Keys HR, Cantor JR, Lewis CA, Chan SH, Kunchok T, Abu-Remaileh M, Freinkman E, Schweitzer LD, Sabatini DM. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature. 2018;559(7715):632–6.PubMedPubMedCentralCrossRef Kanarek N, Keys HR, Cantor JR, Lewis CA, Chan SH, Kunchok T, Abu-Remaileh M, Freinkman E, Schweitzer LD, Sabatini DM. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature. 2018;559(7715):632–6.PubMedPubMedCentralCrossRef
132.
go back to reference Ruela-de-Sousa R, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP. Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis. 2010;1(1):e19–e19.PubMedPubMedCentralCrossRef Ruela-de-Sousa R, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP. Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis. 2010;1(1):e19–e19.PubMedPubMedCentralCrossRef
133.
go back to reference Nozhat Z, Mohammadi-Yeganeh S, Azizi F, Zarkesh M, Hedayati M. Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines. DARU J Pharm Sci. 2018;26(2):93–103.CrossRef Nozhat Z, Mohammadi-Yeganeh S, Azizi F, Zarkesh M, Hedayati M. Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines. DARU J Pharm Sci. 2018;26(2):93–103.CrossRef
135.
go back to reference Warkad MS, Kim C-H, Kang B-G, Park S-H, Jung J-S, Feng J-H, Inci G, Kim S-C, Suh H-W, Lim SS. Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells. Sci Rep. 2021;11(1):1–13.CrossRef Warkad MS, Kim C-H, Kang B-G, Park S-H, Jung J-S, Feng J-H, Inci G, Kim S-C, Suh H-W, Lim SS. Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells. Sci Rep. 2021;11(1):1–13.CrossRef
136.
go back to reference Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem. 2020;8:829.PubMedPubMedCentralCrossRef Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem. 2020;8:829.PubMedPubMedCentralCrossRef
137.
go back to reference Javed Z, Sadia H, Iqbal MJ, Shamas S, Malik K, Ahmed R, Raza S, Butnariu M, Cruz-Martins N, Sharifi-Rad J. Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment. Cancer Cell Int. 2021;21(1):1–11.CrossRef Javed Z, Sadia H, Iqbal MJ, Shamas S, Malik K, Ahmed R, Raza S, Butnariu M, Cruz-Martins N, Sharifi-Rad J. Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment. Cancer Cell Int. 2021;21(1):1–11.CrossRef
138.
go back to reference Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf, B. 2019;180:9–22.CrossRef Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf, B. 2019;180:9–22.CrossRef
140.
go back to reference Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal. 2020;18:1–16.CrossRef Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal. 2020;18:1–16.CrossRef
141.
Metadata
Title
Chemoprotective and chemosensitizing effects of apigenin on cancer therapy
Authors
Zahra Nozhat
Shabnam Heydarzadeh
Zahra Memariani
Amirhossein Ahmadi
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02282-3

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine