Skip to main content
Top
Published in: Clinical Reviews in Bone and Mineral Metabolism 1-4/2023

20-02-2023 | Cytokines | Review Paper

The Macrophage’s Role on Bone Remodeling and Osteogenesis: a Systematic Review

Authors: João Maria Orvalho, Juliana Campos Hasse Fernandes, Rogerio Moraes Castilho, Gustavo Vicentis Oliveira Fernandes

Published in: Clinical & Translational Metabolism | Issue 1-4/2023

Login to get access

Abstract

Macrophages are one of the most abundant immune cells in the human body. They have several roles and functions in the body; however, their role in bone osteogenesis and remodulation has yet to be accurately determined. Thus, this systematic review aimed to determine and explain the macrophages’ role associated with remodeling and osteogenesis. Electronic search was conducted through MEDLINE (PubMed) and Web of Science (WoS), with the following focused question “What is the real macrophages’ role in the bone remodeling and osteogenesis and what would be the conditions to trigger the behavior?” After initial screening of 7051 articles, 31 were remained for full-text reading. Then, after revision and evaluation, 25 articles were included for the final qualitative analysis. Macrophages can be divided into inflammatory M1 macrophages and anti-inflammatory M2 macrophages. M1 and M2 act in a fracture and release proinflammatory cytokines recruiting cells, such as mesenchymal stem cells (MSCs), and increase osteoclast activity. After a few days, the inflammatory process stops, and M1 macrophages differentiate to M2 macrophages in the presence of IL-4. M2 macrophages release anti-inflammatory cytokines, upregulating RUNX-2 in MSCs, who consequently are differentiated to osteoblasts. These cells will produce bone matrix (osteocalcin, osteopontin, and collagen I), building/repairing the area. Based on the information gathered, it was possible to conclude that macrophages have a crucial role within osteogenesis, and both M1 and M2 macrophages are essential to make the inflammatory and remodeling phase have an adequate formation/recovery.

Graphical Abstract

Summarization of all findings related to this systematic review, reporting the phases, involvement, and behavior of macrophages and other constituents.
Literature
1.
go back to reference Marotti G, Ferretti M, Palumbo C, Benincasa M. Static and dynamic bone formation and the mechanism of collagen fiber orientation. Bone. 1999;25:156. Marotti G, Ferretti M, Palumbo C, Benincasa M. Static and dynamic bone formation and the mechanism of collagen fiber orientation. Bone. 1999;25:156.
2.
go back to reference Ferretti M, Palumbo C, Contri M, Marotti G. Static and dynamic osteogenesis: two different types of bone formation. Anat Embryol. 2002;206:21–9.CrossRef Ferretti M, Palumbo C, Contri M, Marotti G. Static and dynamic osteogenesis: two different types of bone formation. Anat Embryol. 2002;206:21–9.CrossRef
3.
go back to reference El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28.PubMedCrossRef El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28.PubMedCrossRef
4.
go back to reference Fabris ALD, Faverani LP, Gomes-Ferreira PHS, Polo TOB, Santiago-Junior JF, Okamoto R. Bone repair access of BoneCeramic (TM) in 5-mm defects: study on rat calvaria. J Appl Oral Sci. 2018;26:e20160531.PubMedPubMedCentralCrossRef Fabris ALD, Faverani LP, Gomes-Ferreira PHS, Polo TOB, Santiago-Junior JF, Okamoto R. Bone repair access of BoneCeramic (TM) in 5-mm defects: study on rat calvaria. J Appl Oral Sci. 2018;26:e20160531.PubMedPubMedCentralCrossRef
5.
go back to reference Garcia-Gareta E, Coathup M-J, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–21.PubMedCrossRef Garcia-Gareta E, Coathup M-J, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–21.PubMedCrossRef
8.
go back to reference Mansour A, Mezour MA, Badran Z, Tamimi F. Extracellular matrices for bone regeneration: a literature review. Tissue Eng Part A. 2017;23:1436–51.PubMedCrossRef Mansour A, Mezour MA, Badran Z, Tamimi F. Extracellular matrices for bone regeneration: a literature review. Tissue Eng Part A. 2017;23:1436–51.PubMedCrossRef
9.
go back to reference Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006;235:176–90.PubMedCrossRef Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006;235:176–90.PubMedCrossRef
10.
go back to reference Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone. J Cell Biochem. 1994;55:287–99.PubMedCrossRef Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone. J Cell Biochem. 1994;55:287–99.PubMedCrossRef
15.
go back to reference Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit RA. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44.PubMedCrossRef Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit RA. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44.PubMedCrossRef
16.
go back to reference Cho S-K. Role of osteal macrophages in bone metabolism. J Pathol Transl Med. 2015;49:102–4.CrossRef Cho S-K. Role of osteal macrophages in bone metabolism. J Pathol Transl Med. 2015;49:102–4.CrossRef
17.
19.
go back to reference Wu X, Xu W, Feng X, He Y, Liu X, Gao Y. TNF-α mediated inflammatory macrophage polarization contributes to the pathogenesis of steroid-induced osteonecrosis in mice. Int J Immunopathol Pharmacol. 2015;28:351–61.PubMedCrossRef Wu X, Xu W, Feng X, He Y, Liu X, Gao Y. TNF-α mediated inflammatory macrophage polarization contributes to the pathogenesis of steroid-induced osteonecrosis in mice. Int J Immunopathol Pharmacol. 2015;28:351–61.PubMedCrossRef
20.
go back to reference Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.
21.
go back to reference Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002;30:26–31.PubMedCrossRef Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002;30:26–31.PubMedCrossRef
22.
go back to reference Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone. J Bone Miner Res. 2015;30:2140–9.PubMedCrossRef Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone. J Bone Miner Res. 2015;30:2140–9.PubMedCrossRef
23.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.PubMedPubMedCentralCrossRef
25.
go back to reference Vi L, Baht GS, Soderblom EJ, Whetstone H, Wei Q, Furman B, Puviindran V, Nadesan P, Foster M, Poon R, White JP, Yahara Y, Ng A, Barrientos T, Grynpas M, Mosely MA, Alman BA. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat Commun. 2018;9:5191.PubMedPubMedCentralCrossRef Vi L, Baht GS, Soderblom EJ, Whetstone H, Wei Q, Furman B, Puviindran V, Nadesan P, Foster M, Poon R, White JP, Yahara Y, Ng A, Barrientos T, Grynpas M, Mosely MA, Alman BA. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat Commun. 2018;9:5191.PubMedPubMedCentralCrossRef
26.
go back to reference Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30:1090–102.PubMedCrossRef Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30:1090–102.PubMedCrossRef
28.
go back to reference Romero-Lopez M, Li Z, Rhee C, Maruyama M, Pajarinen J, O’Donnell B, Lin T-H, Lo C-W, Hanlon J, Dubowitz R, Yao Z, Bunnell BA, Lin H, Tuan RS, Goodman SB. Macrophage effects on mesenchymal stem cell osteogenesis in a three-dimensional in vitro bone model. Tissue Eng Part A. 2020;26:1099–111.PubMedPubMedCentralCrossRef Romero-Lopez M, Li Z, Rhee C, Maruyama M, Pajarinen J, O’Donnell B, Lin T-H, Lo C-W, Hanlon J, Dubowitz R, Yao Z, Bunnell BA, Lin H, Tuan RS, Goodman SB. Macrophage effects on mesenchymal stem cell osteogenesis in a three-dimensional in vitro bone model. Tissue Eng Part A. 2020;26:1099–111.PubMedPubMedCentralCrossRef
29.
go back to reference Gong L, Zhao Y, Zhang Y, Ruan Z. The macrophage polarization regulates MSC osteoblast differentiation in vitro. Ann Clin Lab Sci. 2016;46:65–71.PubMed Gong L, Zhao Y, Zhang Y, Ruan Z. The macrophage polarization regulates MSC osteoblast differentiation in vitro. Ann Clin Lab Sci. 2016;46:65–71.PubMed
30.
go back to reference Lu LY, Loi F, Nathan K, Lin TH, Pajarinen J, Gibon E, Nabeshima A, Cordova L, Jämsen E, Yao Z, Goodman SB. Pro-inflammatory M1 macrophages promote osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res. 2017;35:2378–85.PubMedPubMedCentralCrossRef Lu LY, Loi F, Nathan K, Lin TH, Pajarinen J, Gibon E, Nabeshima A, Cordova L, Jämsen E, Yao Z, Goodman SB. Pro-inflammatory M1 macrophages promote osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res. 2017;35:2378–85.PubMedPubMedCentralCrossRef
31.
go back to reference Xiong Y, Chen L, Yan C, Zhou W, Yu T, Sun Y, Cao F, Xue H, Hu Y, Chen D, Mi B, Liu G. M2 Macrophagy-derived exosomal miRNA-5106 induces bone mesenchymal stem cells towards osteoblastic fate by targeting salt-inducible kinase 2 and 3. J Nanobiotechnology. 2020;18:66.PubMedPubMedCentralCrossRef Xiong Y, Chen L, Yan C, Zhou W, Yu T, Sun Y, Cao F, Xue H, Hu Y, Chen D, Mi B, Liu G. M2 Macrophagy-derived exosomal miRNA-5106 induces bone mesenchymal stem cells towards osteoblastic fate by targeting salt-inducible kinase 2 and 3. J Nanobiotechnology. 2020;18:66.PubMedPubMedCentralCrossRef
32.
go back to reference Ehnert S, Linnemann C, Aspera-Werz RH, Bykova D, Biermann S, Fecht L, De Zwart PM, Nussler AK, Stuby F. Immune cell induced migration of osteoprogenitor cells is mediated by TGF-beta dependent upregulation of NOX4 and activation of focal adhesion kinase. Int J Mol Sci. 2018;19:2239.PubMedPubMedCentralCrossRef Ehnert S, Linnemann C, Aspera-Werz RH, Bykova D, Biermann S, Fecht L, De Zwart PM, Nussler AK, Stuby F. Immune cell induced migration of osteoprogenitor cells is mediated by TGF-beta dependent upregulation of NOX4 and activation of focal adhesion kinase. Int J Mol Sci. 2018;19:2239.PubMedPubMedCentralCrossRef
33.
go back to reference Zhao SJ, Kong FQ, Jie J, Li Q, Liu H, Xu A-D, Yang Y-Q, Jiang B, Wang D-D, Zhou Z-Q, Tang P-Y, Chen J, Wang Q, Zhou Z, Chen Q, Yin G-Y, Zhang H-W, Fan J. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3beta/beta-catenin pathway. Theranostics. 2020;10:17–35.PubMedPubMedCentralCrossRef Zhao SJ, Kong FQ, Jie J, Li Q, Liu H, Xu A-D, Yang Y-Q, Jiang B, Wang D-D, Zhou Z-Q, Tang P-Y, Chen J, Wang Q, Zhou Z, Chen Q, Yin G-Y, Zhang H-W, Fan J. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3beta/beta-catenin pathway. Theranostics. 2020;10:17–35.PubMedPubMedCentralCrossRef
34.
go back to reference Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–9.PubMedCrossRef Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–9.PubMedCrossRef
35.
go back to reference Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jamsen E, Yao Z, Goodman SB. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017;8:277.PubMedPubMedCentralCrossRef Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jamsen E, Yao Z, Goodman SB. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017;8:277.PubMedPubMedCentralCrossRef
36.
go back to reference Nathan K, Lu LYL, Lin T, Pajarinen J, Jämsen E, Huang J-F, Romero-Lopez M, Maruyama M, Kohno Y, Yao Z, Goodman SB. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res. 2019;8:481–8.PubMedPubMedCentralCrossRef Nathan K, Lu LYL, Lin T, Pajarinen J, Jämsen E, Huang J-F, Romero-Lopez M, Maruyama M, Kohno Y, Yao Z, Goodman SB. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res. 2019;8:481–8.PubMedPubMedCentralCrossRef
37.
go back to reference Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol. 2014;184:3192–204.PubMedCrossRef Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol. 2014;184:3192–204.PubMedCrossRef
38.
go back to reference Lee J, Byun H, Perikamana SKM, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8:e1801106.PubMedCrossRef Lee J, Byun H, Perikamana SKM, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8:e1801106.PubMedCrossRef
39.
go back to reference Wasnik S, Rundle CH, Baylink DJ, Yazdi MS, Carreon EE, Xu Y, Qin X. Lau K-HW, Tang X, 1,25-dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites. JCI Insight. 2018;3:e98773.PubMedPubMedCentralCrossRef Wasnik S, Rundle CH, Baylink DJ, Yazdi MS, Carreon EE, Xu Y, Qin X. Lau K-HW, Tang X, 1,25-dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites. JCI Insight. 2018;3:e98773.PubMedPubMedCentralCrossRef
40.
go back to reference Lee B, Iwaniec UT, Turner RT, Lin YW, Clarke BL, Gingery A, Wei LN. RIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis. JCI Insight. 2017;2:e90517.PubMedPubMedCentralCrossRef Lee B, Iwaniec UT, Turner RT, Lin YW, Clarke BL, Gingery A, Wei LN. RIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis. JCI Insight. 2017;2:e90517.PubMedPubMedCentralCrossRef
41.
go back to reference Wang N, Liu X, Shi L, Liu Y, Guo S, Liu W, Li X, Meng J, Ma X, Guo Z. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater Sci. 2020;8:1604–14.PubMedCrossRef Wang N, Liu X, Shi L, Liu Y, Guo S, Liu W, Li X, Meng J, Ma X, Guo Z. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater Sci. 2020;8:1604–14.PubMedCrossRef
42.
go back to reference Annamalai RT, Turner PA, Carson WFT, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials. 2018;161:216–27.PubMedPubMedCentralCrossRef Annamalai RT, Turner PA, Carson WFT, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials. 2018;161:216–27.PubMedPubMedCentralCrossRef
43.
go back to reference Wang J, Liu D, Guo B, Yang X, Chen X, Zhu X, Fan Y, Zhang X. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomater. 2017;51:447–60.PubMedCrossRef Wang J, Liu D, Guo B, Yang X, Chen X, Zhu X, Fan Y, Zhang X. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomater. 2017;51:447–60.PubMedCrossRef
44.
go back to reference Niu Y, Wang L, Yu N, Xing P, Wang Z, Zhong Z, Feng Y, Dong L, Wang C. An “all-in-one” scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomater. 2020;111:153–69.PubMedCrossRef Niu Y, Wang L, Yu N, Xing P, Wang Z, Zhong Z, Feng Y, Dong L, Wang C. An “all-in-one” scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomater. 2020;111:153–69.PubMedCrossRef
45.
go back to reference Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–18.PubMedCrossRef Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–18.PubMedCrossRef
47.
go back to reference Chow SK, Chim YN, Wang J, Zhang N, Wong RM, Tang N, et al. Vibration treatment modulates macrophage polarisation and enhances early inflammatory response in oestrogen-deficient osteoporotic-fracture healing. Eur Cell Mater 2019;38:228-45. Chow SK, Chim YN, Wang J, Zhang N, Wong RM, Tang N, et al. Vibration treatment modulates macrophage polarisation and enhances early inflammatory response in oestrogen-deficient osteoporotic-fracture healing. Eur Cell Mater 2019;38:228-45.
48.
go back to reference Cui Y, Fu S, Hou T, Wu X. Endothelial progenitor cells enhance the migration and osteoclastic differentiation of bone marrow-derived macrophages in vitro and in a mouse femur fracture model through Talin-1. Cell Physiol Biochem 2018;49(2):555-564. https://doi.org/10.1159/000492993. Cui Y, Fu S, Hou T, Wu X. Endothelial progenitor cells enhance the migration and osteoclastic differentiation of bone marrow-derived macrophages in vitro and in a mouse femur fracture model through Talin-1. Cell Physiol Biochem 2018;49(2):555-564. https://​doi.​org/​10.​1159/​000492993.
49.
go back to reference Nicolin V, Baldini G, De Iaco D, Bortul R, Turco G, Nori SL. Looking for calcium phosphate composite suitable to study osteoclast endocytosis: Preliminary observations. Transl Med UniSa. 2016;14:15-20. Nicolin V, Baldini G, De Iaco D, Bortul R, Turco G, Nori SL. Looking for calcium phosphate composite suitable to study osteoclast endocytosis: Preliminary observations. Transl Med UniSa. 2016;14:15-20.
Metadata
Title
The Macrophage’s Role on Bone Remodeling and Osteogenesis: a Systematic Review
Authors
João Maria Orvalho
Juliana Campos Hasse Fernandes
Rogerio Moraes Castilho
Gustavo Vicentis Oliveira Fernandes
Publication date
20-02-2023
Publisher
Springer US
Keyword
Cytokines
Published in
Clinical & Translational Metabolism / Issue 1-4/2023
Print ISSN: 1534-8644
Electronic ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-023-09286-9
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine