Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway

Authors: Rosalind P Herbert, Julie Harris, Kim Pei Chong, Jamie Chapman, Adrian K West, Meng Inn Chuah

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

The primary olfactory pathway is a potential route through which microorganisms from the periphery could potentially access the central nervous system. Our previous studies demonstrated that if the olfactory epithelium was damaged, bacteria administered into the nasal cavity induced nitric oxide production in olfactory ensheathing cells. This study investigates the cytokine profile of olfactory tissues as a consequence of bacterial challenge and establishes whether or not the bacteria are able to reach the olfactory bulb in the central nervous system.

Methods

The olfactory epithelium of C57BL/6 mice was damaged by unilateral Triton X-100 nasal washing, and Staphylococcus aureus was administered ipsilaterally 4 days later. Olfactory mucosa and bulb were harvested 6 h, 24 h and 5 days after inoculation and their cytokine profile compared to control tissues. The fate of S. aureus and the response of bulbar microglia were examined using fluorescence microscopy and transmission electron microscopy.

Results

In the olfactory mucosa, administered S. aureus was present in supporting cells of the olfactory epithelium, and macrophages and olfactory nerve bundles in the lamina propria. Fluorescein isothiocyanate-conjugated S. aureus was observed within the olfactory mucosa and bulb 6 h after inoculation, but remained restricted to the peripheral layers up to 5 days later. At the 24-h time point, the level of interleukin-6 (IL-6) and tumour necrosis factor-α in the compromised olfactory tissues challenged with bacteria (12,466 ± 956 pg/ml and 552 ± 193 pg/ml, respectively) was significantly higher than that in compromised olfactory tissues alone (6,092 ± 1,403 pg/ml and 80 ± 2 pg/ml, respectively). Immunohistochemistry confirmed that IL-6 was present in several cell types including olfactory ensheathing cells and mitral cells of the olfactory bulb. Concurrently, there was a 4.4-, 4.5- and 2.8-fold increase in the density of iNOS-expressing cells in the olfactory mucosa, olfactory nerve and glomerular layers combined, and granule layer of the olfactory bulb, respectively.

Conclusions

Bacteria are able to penetrate the immunological defence of the compromised olfactory mucosa and infiltrate the olfactory bulb within 6 h even though a proinflammatory profile is mounted. Activated microglia may have a role in restricting bacteria to the outer layers of the olfactory bulb.
Literature
1.
go back to reference Mori I, Goshima F, Imai Y, Kohsaka S, Sugiyama T, Yoshida T, Yokochi T, Nishiyama Y, Kimura Y: Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol 2002, 83:2109–2116.CrossRefPubMed Mori I, Goshima F, Imai Y, Kohsaka S, Sugiyama T, Yoshida T, Yokochi T, Nishiyama Y, Kimura Y: Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol 2002, 83:2109–2116.CrossRefPubMed
2.
go back to reference Claeys S, de Belder T, Holtappels G, Gevaert P, Verhasselt B, van Cauwenberge P, Bachert C: Human beta-defensins and toll-like receptors in the upper airway. Allergy 2003, 58:748–753.CrossRefPubMed Claeys S, de Belder T, Holtappels G, Gevaert P, Verhasselt B, van Cauwenberge P, Bachert C: Human beta-defensins and toll-like receptors in the upper airway. Allergy 2003, 58:748–753.CrossRefPubMed
3.
go back to reference Charles PC, Walters E, Margolis F, Johnston RE: Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology 1995, 208:662–671.CrossRefPubMed Charles PC, Walters E, Margolis F, Johnston RE: Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology 1995, 208:662–671.CrossRefPubMed
4.
go back to reference Bi Z, Barna M, Komatsu T, Reiss CS: Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol 1995, 69:6466–6472.PubMedPubMedCentral Bi Z, Barna M, Komatsu T, Reiss CS: Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol 1995, 69:6466–6472.PubMedPubMedCentral
5.
go back to reference van Ginkel FW, McGhee JR, Watt JM, Campos-Torres A, Parish LA, Briles DE: Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. PNAS 2003, 100:14363–14367.CrossRefPubMedPubMedCentral van Ginkel FW, McGhee JR, Watt JM, Campos-Torres A, Parish LA, Briles DE: Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. PNAS 2003, 100:14363–14367.CrossRefPubMedPubMedCentral
6.
go back to reference Harris JA, West AK, Chuah MI: Olfactory ensheathing cells: Nitric oxide production and innate immunity. Glia 2009, 57:1848–1857.CrossRefPubMed Harris JA, West AK, Chuah MI: Olfactory ensheathing cells: Nitric oxide production and innate immunity. Glia 2009, 57:1848–1857.CrossRefPubMed
7.
go back to reference Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI: Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 2005, 51:132–147.CrossRefPubMed Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI: Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 2005, 51:132–147.CrossRefPubMed
8.
go back to reference Vincent AJ, West AK, Chuah MI: Glial modulation of the innate immune response: Olfactory ensheathing cells join the melee? In In New Research on Innate Immunity. Edited by: Durand MMCV. Nova Science Publishers, Inc, New York; 2008:339–349. Vincent AJ, West AK, Chuah MI: Glial modulation of the innate immune response: Olfactory ensheathing cells join the melee? In In New Research on Innate Immunity. Edited by: Durand MMCV. Nova Science Publishers, Inc, New York; 2008:339–349.
9.
go back to reference Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997, 91:521–530.CrossRefPubMed Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997, 91:521–530.CrossRefPubMed
10.
go back to reference Ruitenberg MJ, Vukovic J, Blomster L, Hall JM, Jung S, Filgueira L, McMenamin PG, Plant GW: CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. J Neuroimmunol 2008, 205:80–85.CrossRefPubMed Ruitenberg MJ, Vukovic J, Blomster L, Hall JM, Jung S, Filgueira L, McMenamin PG, Plant GW: CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. J Neuroimmunol 2008, 205:80–85.CrossRefPubMed
11.
go back to reference Verhaagen J, Oestreicher AB, Grillo M, Khew-Goodall YS, Gispen WH, Margolis FL: Neuroplasticity in the olfactory system: differential effects of central and peripheral lesions of the primary olfactory pathway on the expression of B-50/GAP43 and the olfactory marker protein. J Neurosci Res 1990, 26:31–44.CrossRefPubMed Verhaagen J, Oestreicher AB, Grillo M, Khew-Goodall YS, Gispen WH, Margolis FL: Neuroplasticity in the olfactory system: differential effects of central and peripheral lesions of the primary olfactory pathway on the expression of B-50/GAP43 and the olfactory marker protein. J Neurosci Res 1990, 26:31–44.CrossRefPubMed
12.
go back to reference Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248–254.CrossRefPubMed Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248–254.CrossRefPubMed
13.
go back to reference Hale DM, Ray S, Leung JY, Holloway AF, Chung RS, West AK, Chuah MI: Olfactory ensheathing cells moderate nuclear factor kappaB translocation in astrocytes. Mol Cell Neurosci 2011, 46:213–221.CrossRefPubMed Hale DM, Ray S, Leung JY, Holloway AF, Chung RS, West AK, Chuah MI: Olfactory ensheathing cells moderate nuclear factor kappaB translocation in astrocytes. Mol Cell Neurosci 2011, 46:213–221.CrossRefPubMed
14.
go back to reference Montero Domínguez M, González B, Zimmer J: Neuroprotective effects of the anti-inflammatory compound triflusal on ischemia-like neurodegeneration in mouse hippocampal slice cultures occur independent of microglia. Exp Neurol 2009, 218:11–23.CrossRefPubMed Montero Domínguez M, González B, Zimmer J: Neuroprotective effects of the anti-inflammatory compound triflusal on ischemia-like neurodegeneration in mouse hippocampal slice cultures occur independent of microglia. Exp Neurol 2009, 218:11–23.CrossRefPubMed
15.
go back to reference Seifert S, Pannell M, Uckert W, Färber K, Kettenmann H: Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium 2011, 49:365–375.CrossRefPubMed Seifert S, Pannell M, Uckert W, Färber K, Kettenmann H: Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium 2011, 49:365–375.CrossRefPubMed
16.
go back to reference Leung JY, Chapman JA, Harris JA, Hale D, Chung RS, West AK, Chuah MI: Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci 2008, 65:2732–2739.CrossRefPubMed Leung JY, Chapman JA, Harris JA, Hale D, Chung RS, West AK, Chuah MI: Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci 2008, 65:2732–2739.CrossRefPubMed
17.
go back to reference Cummings DM, Emge DK, Small SL, Margolis FL: Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J Comp Neurol 2000, 421:362–373.CrossRefPubMed Cummings DM, Emge DK, Small SL, Margolis FL: Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J Comp Neurol 2000, 421:362–373.CrossRefPubMed
18.
go back to reference Tennent R, Chuah MI: Ultrastructural study of ensheathing cells in early development of olfactory axons. Dev Brain Res 1996, 95:135–139.CrossRef Tennent R, Chuah MI: Ultrastructural study of ensheathing cells in early development of olfactory axons. Dev Brain Res 1996, 95:135–139.CrossRef
19.
go back to reference Bauer S, Kerr BJ, Patterson PH: The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007, 8:221–232.CrossRefPubMed Bauer S, Kerr BJ, Patterson PH: The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007, 8:221–232.CrossRefPubMed
20.
go back to reference Islam Z, Harkema JR, Pestka JJ: Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect 2006, 114:1099–1107.CrossRefPubMedPubMedCentral Islam Z, Harkema JR, Pestka JJ: Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect 2006, 114:1099–1107.CrossRefPubMedPubMedCentral
21.
go back to reference Wang JE, Jorgensen PF, Almlof M, Thiemermann C, Foster SJ, Aasen AO, Solberg R: Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect Immun 2000, 68:3965–3970.CrossRefPubMedPubMedCentral Wang JE, Jorgensen PF, Almlof M, Thiemermann C, Foster SJ, Aasen AO, Solberg R: Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect Immun 2000, 68:3965–3970.CrossRefPubMedPubMedCentral
22.
go back to reference Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA: Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 2002, 99:1503–1508.CrossRefPubMedPubMedCentral Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA: Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 2002, 99:1503–1508.CrossRefPubMedPubMedCentral
23.
go back to reference Kielian T, Bearden ED, Baldwin AC, Esen N: IL-1 and TNF-alpha play a pivotal role in the host immune response in a mouse model of Staphylococcus aureus-induced experimental brain abscess. J Neuropathol Exp Neurol 2004, 63:381–396.CrossRefPubMed Kielian T, Bearden ED, Baldwin AC, Esen N: IL-1 and TNF-alpha play a pivotal role in the host immune response in a mouse model of Staphylococcus aureus-induced experimental brain abscess. J Neuropathol Exp Neurol 2004, 63:381–396.CrossRefPubMed
24.
go back to reference Hegg CC, Au E, Roskams AJ, Lucero MT: PACAP is present in the olfactory system and evokes calcium transients in olfactory receptor neurons. J Neurophysiol 2003, 90:2711–2719.CrossRefPubMedPubMedCentral Hegg CC, Au E, Roskams AJ, Lucero MT: PACAP is present in the olfactory system and evokes calcium transients in olfactory receptor neurons. J Neurophysiol 2003, 90:2711–2719.CrossRefPubMedPubMedCentral
25.
go back to reference Kanekar S, Gandham M, Lucero MT: PACAP protects against TNF[alpha]-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol Cell Neurosci 2010, 45:345–354.CrossRefPubMedPubMedCentral Kanekar S, Gandham M, Lucero MT: PACAP protects against TNF[alpha]-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol Cell Neurosci 2010, 45:345–354.CrossRefPubMedPubMedCentral
26.
go back to reference Nan B, Getchell ML, Partin JV, Getchell TV: Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. J Comp Neurol 2001, 435:60–77.CrossRefPubMed Nan B, Getchell ML, Partin JV, Getchell TV: Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. J Comp Neurol 2001, 435:60–77.CrossRefPubMed
27.
go back to reference Yamashita T, Sawamoto K, Suzuki S, Suzuki N, Adachi K, Kawase T, Mihara M, Ohsugi Y, Abe K, Okano H: Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons. J Neurochem 2005, 94:459–468.CrossRefPubMed Yamashita T, Sawamoto K, Suzuki S, Suzuki N, Adachi K, Kawase T, Mihara M, Ohsugi Y, Abe K, Okano H: Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons. J Neurochem 2005, 94:459–468.CrossRefPubMed
28.
go back to reference Vincent AJ, West AK, Chuah MI: Morphological and functional plasticity of olfactory ensheathing cells. J Neurocytol 2005, 34:65–80.CrossRefPubMed Vincent AJ, West AK, Chuah MI: Morphological and functional plasticity of olfactory ensheathing cells. J Neurocytol 2005, 34:65–80.CrossRefPubMed
29.
go back to reference Vincent AJ, Choi-Lundberg DL, Harris JA, West AK, Chuah MI: Bacteria and PAMPs activate NFκB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia 2007, 55:905–916.CrossRefPubMed Vincent AJ, Choi-Lundberg DL, Harris JA, West AK, Chuah MI: Bacteria and PAMPs activate NFκB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia 2007, 55:905–916.CrossRefPubMed
30.
go back to reference Xie QW, Kashiwabara Y, Nathan C: Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994, 269:4705–4708.PubMed Xie QW, Kashiwabara Y, Nathan C: Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994, 269:4705–4708.PubMed
31.
go back to reference Liu Z, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-[kappa] B activation prevents cell death. Cell 1996, 87:565–576.CrossRefPubMed Liu Z, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-[kappa] B activation prevents cell death. Cell 1996, 87:565–576.CrossRefPubMed
32.
go back to reference Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB: NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999, 401:82–85.CrossRefPubMed Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB: NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999, 401:82–85.CrossRefPubMed
33.
go back to reference Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci 1993, 90:10193–10197.CrossRefPubMedPubMedCentral Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci 1993, 90:10193–10197.CrossRefPubMedPubMedCentral
34.
go back to reference Libermann TA, Baltimore D: Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990, 10:2327–2334.CrossRefPubMedPubMedCentral Libermann TA, Baltimore D: Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990, 10:2327–2334.CrossRefPubMedPubMedCentral
35.
go back to reference Roet KC, Bossers K, Franssen EH, Ruitenberg MJ, Verhaagen J: A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011, 229:10–45.CrossRefPubMed Roet KC, Bossers K, Franssen EH, Ruitenberg MJ, Verhaagen J: A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011, 229:10–45.CrossRefPubMed
36.
go back to reference Gauldie J, Richards C, Harnish D, Lansdorp P, Baumann H: Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 1987, 84:7251–7255.CrossRefPubMedPubMedCentral Gauldie J, Richards C, Harnish D, Lansdorp P, Baumann H: Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 1987, 84:7251–7255.CrossRefPubMedPubMedCentral
37.
go back to reference Lotz M, Jirik F, Kabouridis P, Tsoukas C, Hirano T, Kishimoto T, Carson DA: B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes. J Exp Med 1988, 167:1253–1258.CrossRefPubMed Lotz M, Jirik F, Kabouridis P, Tsoukas C, Hirano T, Kishimoto T, Carson DA: B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes. J Exp Med 1988, 167:1253–1258.CrossRefPubMed
38.
go back to reference Macedo-Ramos H, Campos FSO, Carvalho LA, Ramos IB, Teixeira LM, De Souza W, Cavalcante LA, Baetas-da-Cruz W: Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res 2011, 69:308–313.CrossRefPubMed Macedo-Ramos H, Campos FSO, Carvalho LA, Ramos IB, Teixeira LM, De Souza W, Cavalcante LA, Baetas-da-Cruz W: Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res 2011, 69:308–313.CrossRefPubMed
39.
go back to reference Pearce BD, Hobbs MV, McGraw TS, Buchmeier MJ: Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo. J Virol 1994, 68:5483–5495.PubMedPubMedCentral Pearce BD, Hobbs MV, McGraw TS, Buchmeier MJ: Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo. J Virol 1994, 68:5483–5495.PubMedPubMedCentral
40.
go back to reference Lalancette-Hébert M, Phaneuf D, Soucy G, Weng YC, Kriz J: Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain 2009, 132:940–954.CrossRefPubMed Lalancette-Hébert M, Phaneuf D, Soucy G, Weng YC, Kriz J: Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain 2009, 132:940–954.CrossRefPubMed
41.
go back to reference Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, Liu XF: Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett 2008, 446:30–35.CrossRefPubMed Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, Liu XF: Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett 2008, 446:30–35.CrossRefPubMed
42.
go back to reference Yang JP, Liu HJ, Cheng SM, Wang ZL, Cheng X, Yu HX, Liu XF: Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett 2009, 449:108–111.CrossRefPubMed Yang JP, Liu HJ, Cheng SM, Wang ZL, Cheng X, Yu HX, Liu XF: Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett 2009, 449:108–111.CrossRefPubMed
43.
go back to reference Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA: Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 2009, 29:6734–6751.CrossRefPubMedPubMedCentral Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA: Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 2009, 29:6734–6751.CrossRefPubMedPubMedCentral
45.
go back to reference Lalancette-Hébert Ml, Moquin A, Choi AO, Kriz J, Maysinger D: Lipopolysaccharide-QD micelles induce marked induction of TLR2 and lipid droplet accumulation in olfactory bulb microglia. Mol Pharm 2010, 7:1183–1194.CrossRef Lalancette-Hébert Ml, Moquin A, Choi AO, Kriz J, Maysinger D: Lipopolysaccharide-QD micelles induce marked induction of TLR2 and lipid droplet accumulation in olfactory bulb microglia. Mol Pharm 2010, 7:1183–1194.CrossRef
Metadata
Title
Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway
Authors
Rosalind P Herbert
Julie Harris
Kim Pei Chong
Jamie Chapman
Adrian K West
Meng Inn Chuah
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-109

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue