Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 11/2015

01-11-2015 | Original Article

Cytokine-enhanced maturation and migration to the lymph nodes of a human dying melanoma cell-loaded dendritic cell vaccine

Authors: Gabriela A. Pizzurro, Ivana J. Tapia, Leonardo Sganga, Osvaldo L. Podhajcer, José Mordoh, María M. Barrio

Published in: Cancer Immunology, Immunotherapy | Issue 11/2015

Login to get access

Abstract

Dendritic cells (DCs) are professional APCs used for the development of cancer vaccines because of their ability to activate adaptive immune responses. Previously, we designed the DC/Apo-Nec vaccine using human DCs loaded with dying melanoma cells that primed Ag-specific cytotoxic T cells. Here, we evaluate the effect of a standard pro-inflammatory cytokine cocktail (CC) and adjuvants on DC/Apo-Nec maturation and migration. CC addition to the vaccine coculture allowed efficient Ag uptake while attaining strong vaccine maturation with an immunostimulatory profile. The use of CC not only increased CCR7 expression and the vaccine chemokine responsiveness but also upregulated matrix metalloproteinase-9 secretion, which regulated its invasive migration in vitro. Neither IL-6 nor prostaglandin E2 had a negative effect on vaccine preparation. In fact, all CC components were necessary for complete vaccine maturation. Subcutaneously injected DC/Apo-Nec vaccine migrated rapidly to draining LNs in nude mice, accumulating regionally after 48 h. The migrating cells of the CC-matured vaccine augmented in proportion and range of distribution, an effect that increased further with the topical administration of imiquimod cream. The migrating proportion of human DCs was detected in draining LNs for at least 9 days after injection. The addition of CC during DC/Apo-Nec preparation enhanced vaccine performance by improving maturation and response to LN signals and by conferring a motile and invasive vaccine phenotype both in vitro and in vivo. More importantly, the vaccine could be combined with different adjuvants. Therefore, this DC-based vaccine design shows great potential value for clinical translation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252CrossRefPubMed Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252CrossRefPubMed
3.
5.
go back to reference Madan RA, Gulley JL, Fojo T, Dahut WL (2010) Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist 15(9):969–975PubMedCentralCrossRefPubMed Madan RA, Gulley JL, Fojo T, Dahut WL (2010) Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist 15(9):969–975PubMedCentralCrossRefPubMed
7.
go back to reference Escamilla-Tilch M, Filio-Rodriguez G, Garcia-Rocha R, Mancilla-Herrera I, Mitchison NA, Ruiz-Pacheco JA, Sanchez-Garcia FJ, Sandoval-Borrego D, Vazquez-Sanchez EA (2013) The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 91(10):601–610CrossRefPubMed Escamilla-Tilch M, Filio-Rodriguez G, Garcia-Rocha R, Mancilla-Herrera I, Mitchison NA, Ruiz-Pacheco JA, Sanchez-Garcia FJ, Sandoval-Borrego D, Vazquez-Sanchez EA (2013) The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 91(10):601–610CrossRefPubMed
8.
go back to reference Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142CrossRefPubMed Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142CrossRefPubMed
9.
go back to reference Fehres CM, Bruijns SC, van Beelen AJ, Kalay H, Ambrosini M, Hooijberg E, Unger WW, de Gruijl TD, van Kooyk Y (2014) Topical rather than intradermal application of the TLR7 ligand imiquimod leads to human dermal dendritic cell maturation and CD8 T-cell cross-priming. Eur J Immunol 44(8):2415–2424CrossRefPubMed Fehres CM, Bruijns SC, van Beelen AJ, Kalay H, Ambrosini M, Hooijberg E, Unger WW, de Gruijl TD, van Kooyk Y (2014) Topical rather than intradermal application of the TLR7 ligand imiquimod leads to human dermal dendritic cell maturation and CD8 T-cell cross-priming. Eur J Immunol 44(8):2415–2424CrossRefPubMed
10.
go back to reference Barrio MM, de Motta PT, Kaplan J, von Euw EM, Bravo AI, Chacon RD, Mordoh J (2006) A phase I study of an allogeneic cell vaccine (VACCIMEL) with GM-CSF in melanoma patients. J Immunother 29(4):444–454CrossRefPubMed Barrio MM, de Motta PT, Kaplan J, von Euw EM, Bravo AI, Chacon RD, Mordoh J (2006) A phase I study of an allogeneic cell vaccine (VACCIMEL) with GM-CSF in melanoma patients. J Immunother 29(4):444–454CrossRefPubMed
11.
go back to reference Campbell JJ, Bowman EP, Murphy K, Youngman KR, Siani MA, Thompson DA, Wu L, Zlotnik A, Butcher EC (1998) 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol 141(4):1053–1059PubMedCentralCrossRefPubMed Campbell JJ, Bowman EP, Murphy K, Youngman KR, Siani MA, Thompson DA, Wu L, Zlotnik A, Butcher EC (1998) 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol 141(4):1053–1059PubMedCentralCrossRefPubMed
12.
go back to reference Johnson LA, Jackson DG (2014) Control of dendritic cell trafficking in lymphatics by chemokines. Angiogenesis 17(2):335–345CrossRefPubMed Johnson LA, Jackson DG (2014) Control of dendritic cell trafficking in lymphatics by chemokines. Angiogenesis 17(2):335–345CrossRefPubMed
13.
go back to reference MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198(4):615–621PubMedCentralCrossRefPubMed MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198(4):615–621PubMedCentralCrossRefPubMed
15.
go back to reference Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009) Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438–1443CrossRefPubMed Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009) Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438–1443CrossRefPubMed
16.
go back to reference Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168(9):4361–4371CrossRefPubMed Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168(9):4361–4371CrossRefPubMed
18.
19.
go back to reference De Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN, Strijk SP, Ruers TJ, Boerman OC, Oyen WJ, Adema GJ, Punt CJ, Figdor CG (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63(1):12–17PubMed De Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN, Strijk SP, Ruers TJ, Boerman OC, Oyen WJ, Adema GJ, Punt CJ, Figdor CG (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63(1):12–17PubMed
20.
go back to reference Vicari AP, Vanbervliet B, Massacrier C, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo MP, O’Garra A, Trinchieri G, Caux C (2004) In vivo manipulation of dendritic cell migration and activation to elicit antitumour immunity. Novartis Found Symp 256:241–254CrossRefPubMed Vicari AP, Vanbervliet B, Massacrier C, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo MP, O’Garra A, Trinchieri G, Caux C (2004) In vivo manipulation of dendritic cell migration and activation to elicit antitumour immunity. Novartis Found Symp 256:241–254CrossRefPubMed
21.
go back to reference Henrickson SE, Perro M, Loughhead SM, Senman B, Stutte S, Quigley M, Alexe G, Iannacone M, Flynn MP, Omid S, Jesneck JL, Imam S, Mempel TR, Mazo IB, Haining WN, von Andrian UH (2013) Antigen availability determines CD8(+) T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity 39(3):496–507PubMedCentralCrossRefPubMed Henrickson SE, Perro M, Loughhead SM, Senman B, Stutte S, Quigley M, Alexe G, Iannacone M, Flynn MP, Omid S, Jesneck JL, Imam S, Mempel TR, Mazo IB, Haining WN, von Andrian UH (2013) Antigen availability determines CD8(+) T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity 39(3):496–507PubMedCentralCrossRefPubMed
22.
go back to reference Mac Keon S, Gazzaniga S, Mallerman J, Bravo AI, Mordoh J, Wainstok R (2010) Vaccination with dendritic cells charged with apoptotic/necrotic B16 melanoma induces the formation of subcutaneous lymphoid tissue. Vaccine 28(51):8162–8168CrossRefPubMed Mac Keon S, Gazzaniga S, Mallerman J, Bravo AI, Mordoh J, Wainstok R (2010) Vaccination with dendritic cells charged with apoptotic/necrotic B16 melanoma induces the formation of subcutaneous lymphoid tissue. Vaccine 28(51):8162–8168CrossRefPubMed
23.
go back to reference Harris RC, Chianese-Bullock KA, Petroni GR, Schaefer JT, Brill LB 2nd, Molhoek KR, Deacon DH, Patterson JW, Slingluff CL Jr (2012) The vaccine-site microenvironment induced by injection of incomplete Freund’s adjuvant, with or without melanoma peptides. J Immunother 35(1):78–88PubMedCentralCrossRefPubMed Harris RC, Chianese-Bullock KA, Petroni GR, Schaefer JT, Brill LB 2nd, Molhoek KR, Deacon DH, Patterson JW, Slingluff CL Jr (2012) The vaccine-site microenvironment induced by injection of incomplete Freund’s adjuvant, with or without melanoma peptides. J Immunother 35(1):78–88PubMedCentralCrossRefPubMed
24.
go back to reference Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19(4):465–472PubMedCentralCrossRefPubMed Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19(4):465–472PubMedCentralCrossRefPubMed
25.
go back to reference von Euw EM, Barrio MM, Furman D, Bianchini M, Levy EM, Yee C, Li Y, Wainstok R, Mordoh J (2007) Monocyte-derived dendritic cells loaded with a mixture of apoptotic/necrotic melanoma cells efficiently cross-present gp100 and MART-1 antigens to specific CD8(+) T lymphocytes. J Transl Med 5:19. doi:10.1186/1479-5876-5-19 CrossRef von Euw EM, Barrio MM, Furman D, Bianchini M, Levy EM, Yee C, Li Y, Wainstok R, Mordoh J (2007) Monocyte-derived dendritic cells loaded with a mixture of apoptotic/necrotic melanoma cells efficiently cross-present gp100 and MART-1 antigens to specific CD8(+) T lymphocytes. J Transl Med 5:19. doi:10.​1186/​1479-5876-5-19 CrossRef
26.
go back to reference Pizzurro GA, Madorsky Rowdo FP, Pujol-Lereis LM, Quesada-Allue LA, Copati AM, Roberti MP, Teillaud JL, Levy EM, Barrio MM, Mordoh J (2013) High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function. Cancer Immunol Immunother 62(1):3–15CrossRefPubMed Pizzurro GA, Madorsky Rowdo FP, Pujol-Lereis LM, Quesada-Allue LA, Copati AM, Roberti MP, Teillaud JL, Levy EM, Barrio MM, Mordoh J (2013) High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function. Cancer Immunol Immunother 62(1):3–15CrossRefPubMed
27.
go back to reference Barrio MM, Abes R, Colombo M, Pizzurro G, Boix C, Roberti MP, Gelize E, Rodriguez-Zubieta M, Mordoh J, Teillaud JL (2012) Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+) T cells after phagocytosis of gamma-irradiated melanoma cells. PLoS One 7(7):e40311. doi:10.1371/journal.pone.0040311 PubMedCentralCrossRefPubMed Barrio MM, Abes R, Colombo M, Pizzurro G, Boix C, Roberti MP, Gelize E, Rodriguez-Zubieta M, Mordoh J, Teillaud JL (2012) Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+) T cells after phagocytosis of gamma-irradiated melanoma cells. PLoS One 7(7):e40311. doi:10.​1371/​journal.​pone.​0040311 PubMedCentralCrossRefPubMed
28.
go back to reference von Euw EM, Barrio MM, Furman D, Levy EM, Bianchini M, Peguillet I, Lantz O, Vellice A, Kohan A, Chacon M, Yee C, Wainstok R, Mordoh J (2008) A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression. J Transl Med 6:6. doi:10.1186/1479-5876-6-6 CrossRef von Euw EM, Barrio MM, Furman D, Levy EM, Bianchini M, Peguillet I, Lantz O, Vellice A, Kohan A, Chacon M, Yee C, Wainstok R, Mordoh J (2008) A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression. J Transl Med 6:6. doi:10.​1186/​1479-5876-6-6 CrossRef
29.
go back to reference Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP (2014) Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol 28:51–58CrossRefPubMed Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP (2014) Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol 28:51–58CrossRefPubMed
30.
go back to reference Hollender P, Ittelett D, Villard F, Eymard JC, Jeannesson P, Bernard J (2002) Active matrix metalloprotease-9 in and migration pattern of dendritic cells matured in clinical grade culture conditions. Immunobiology 206(4):441–458CrossRefPubMed Hollender P, Ittelett D, Villard F, Eymard JC, Jeannesson P, Bernard J (2002) Active matrix metalloprotease-9 in and migration pattern of dendritic cells matured in clinical grade culture conditions. Immunobiology 206(4):441–458CrossRefPubMed
31.
go back to reference Kalchenko V, Shivtiel S, Malina V, Lapid K, Haramati S, Lapidot T, Brill A, Harmelin A (2006) Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt 11(5):050507. doi:10.1117/1.2364903 CrossRefPubMed Kalchenko V, Shivtiel S, Malina V, Lapid K, Haramati S, Lapidot T, Brill A, Harmelin A (2006) Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt 11(5):050507. doi:10.​1117/​1.​2364903 CrossRefPubMed
32.
go back to reference Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312(1–2):12–19CrossRefPubMed Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312(1–2):12–19CrossRefPubMed
33.
go back to reference Hegde S, Pahne J, Smola-Hess S (2004) Novel immunosuppressive properties of interleukin-6 in dendritic cells: inhibition of NF-kappaB binding activity and CCR7 expression. FASEB J 18(12):1439–1441PubMed Hegde S, Pahne J, Smola-Hess S (2004) Novel immunosuppressive properties of interleukin-6 in dendritic cells: inhibition of NF-kappaB binding activity and CCR7 expression. FASEB J 18(12):1439–1441PubMed
35.
go back to reference Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307(5715):1630–1634CrossRefPubMed Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307(5715):1630–1634CrossRefPubMed
36.
go back to reference Savina A, Amigorena S (2007) Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 219:143–156CrossRefPubMed Savina A, Amigorena S (2007) Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 219:143–156CrossRefPubMed
37.
go back to reference Landi A, Babiuk LA, van Drunen Littel-van den Hurk S (2011) Dendritic cells matured by a prostaglandin E2-containing cocktail can produce high levels of IL-12p70 and are more mature and Th1-biased than dendritic cells treated with TNF-alpha or LPS. Immunobiology 216(6):649–662CrossRefPubMed Landi A, Babiuk LA, van Drunen Littel-van den Hurk S (2011) Dendritic cells matured by a prostaglandin E2-containing cocktail can produce high levels of IL-12p70 and are more mature and Th1-biased than dendritic cells treated with TNF-alpha or LPS. Immunobiology 216(6):649–662CrossRefPubMed
38.
go back to reference Dohnal AM, Witt V, Hugel H, Holter W, Gadner H, Felzmann T (2007) Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer. Cytotherapy 9(8):755–770CrossRefPubMed Dohnal AM, Witt V, Hugel H, Holter W, Gadner H, Felzmann T (2007) Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer. Cytotherapy 9(8):755–770CrossRefPubMed
39.
go back to reference Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64(17):5934–5937CrossRefPubMed Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64(17):5934–5937CrossRefPubMed
41.
go back to reference Spranger S, Javorovic M, Burdek M, Wilde S, Mosetter B, Tippmer S, Bigalke I, Geiger C, Schendel DJ, Frankenberger B (2010) Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075. J Immunol 185(1):738–747CrossRefPubMed Spranger S, Javorovic M, Burdek M, Wilde S, Mosetter B, Tippmer S, Bigalke I, Geiger C, Schendel DJ, Frankenberger B (2010) Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075. J Immunol 185(1):738–747CrossRefPubMed
42.
go back to reference Boullart AC, Aarntzen EH, Verdijk P, Jacobs JF, Schuurhuis DH, Benitez-Ribas D, Schreibelt G, van de Rakt MW, Scharenborg NM, de Boer A, Kramer M, Figdor CG, Punt CJ, Adema GJ, de Vries IJ (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57(11):1589–1597PubMedCentralCrossRefPubMed Boullart AC, Aarntzen EH, Verdijk P, Jacobs JF, Schuurhuis DH, Benitez-Ribas D, Schreibelt G, van de Rakt MW, Scharenborg NM, de Boer A, Kramer M, Figdor CG, Punt CJ, Adema GJ, de Vries IJ (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57(11):1589–1597PubMedCentralCrossRefPubMed
45.
go back to reference Christian NA, Benencia F, Milone MC, Li G, Frail PR, Therien MJ, Coukos G, Hammer DA (2009) In vivo dendritic cell tracking using fluorescence lifetime imaging and near-infrared-emissive polymersomes. Mol Imag Biol 11(3):167–177CrossRef Christian NA, Benencia F, Milone MC, Li G, Frail PR, Therien MJ, Coukos G, Hammer DA (2009) In vivo dendritic cell tracking using fluorescence lifetime imaging and near-infrared-emissive polymersomes. Mol Imag Biol 11(3):167–177CrossRef
46.
go back to reference Park CG, Takahara K, Umemoto E, Yashima Y, Matsubara K, Matsuda Y, Clausen BE, Inaba K, Steinman RM (2001) Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol 13(10):1283–1290CrossRefPubMed Park CG, Takahara K, Umemoto E, Yashima Y, Matsubara K, Matsuda Y, Clausen BE, Inaba K, Steinman RM (2001) Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol 13(10):1283–1290CrossRefPubMed
47.
go back to reference Robson NC, Hoves S, Maraskovsky E, Schnurr M (2010) Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol 22(1):137–144CrossRefPubMed Robson NC, Hoves S, Maraskovsky E, Schnurr M (2010) Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol 22(1):137–144CrossRefPubMed
48.
go back to reference Soudja SM, Henri S, Mello M, Chasson L, Mas A, Wehbe M, Auphan-Anezin N, Leserman L, Van den Eynde B, Schmitt-Verhulst AM (2011) Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells. PLoS One 6(7):e22639. doi:10.1371/journal.pone.0022639 PubMedCentralCrossRefPubMed Soudja SM, Henri S, Mello M, Chasson L, Mas A, Wehbe M, Auphan-Anezin N, Leserman L, Van den Eynde B, Schmitt-Verhulst AM (2011) Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells. PLoS One 6(7):e22639. doi:10.​1371/​journal.​pone.​0022639 PubMedCentralCrossRefPubMed
49.
go back to reference Inoue M, Senju S, Hirata S, Irie A, Baba H, Nishimura Y (2009) An in vivo model of priming of antigen-specific human CTL by Mo-DC in NOD/Shi-scid IL2rgamma(null) (NOG) mice. Immunol Lett 126(1–2):67–72CrossRefPubMed Inoue M, Senju S, Hirata S, Irie A, Baba H, Nishimura Y (2009) An in vivo model of priming of antigen-specific human CTL by Mo-DC in NOD/Shi-scid IL2rgamma(null) (NOG) mice. Immunol Lett 126(1–2):67–72CrossRefPubMed
52.
go back to reference O’Neill DW, Adams S, Bhardwaj N (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104(8):2235–2246CrossRefPubMed O’Neill DW, Adams S, Bhardwaj N (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104(8):2235–2246CrossRefPubMed
53.
go back to reference Hansen M, Met O, Svane IM, Andersen MH (2012) Cellular based cancer vaccines: type 1 polarization of dendritic cells. Curr Med Chem 19(25):4239–4246CrossRefPubMed Hansen M, Met O, Svane IM, Andersen MH (2012) Cellular based cancer vaccines: type 1 polarization of dendritic cells. Curr Med Chem 19(25):4239–4246CrossRefPubMed
Metadata
Title
Cytokine-enhanced maturation and migration to the lymph nodes of a human dying melanoma cell-loaded dendritic cell vaccine
Authors
Gabriela A. Pizzurro
Ivana J. Tapia
Leonardo Sganga
Osvaldo L. Podhajcer
José Mordoh
María M. Barrio
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 11/2015
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-015-1743-z

Other articles of this Issue 11/2015

Cancer Immunology, Immunotherapy 11/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine