Skip to main content
Top
Published in: International Urogynecology Journal 8/2022

25-03-2022 | Cystitis | Original Article

WGCNA and molecular docking reveal key hub genes and potential natural inhibitor in interstitial cystitis/bladder pain syndrome

Authors: Kuiqing Li, Cong Lai, Cheng Liu, Zhuohang Li, Kaixuan Guo, Kewei Xu

Published in: International Urogynecology Journal | Issue 8/2022

Login to get access

Abstract

Introduction and hypothesis

The etiology and treatment of interstitial cystitis/bladder pain syndrome are still controversial. The purpose of this study is to determine the key genes and specific regulatory pathways related to it and to find potential drug-active components through integrated bioinformatics.

Methods

The data set GSE11783 was downloaded from GEO database. The modules significantly related to interstitial cystitis/bladder pain syndrome were identified by weighted correlation network analysis. The genes in the key modules were analyzed by functional enrichment and protein interaction by Cytoscape software, and finally the core hub genes were screened. Furthermore, the molecular docking verification of active components and key proteins was carried out by using AutoDock Vin software.

Results

Among the 14 modules derived from WGCNA, turquoise module had the highest correlation with IC/BPS (r = 0.85, P < 0.001). The genes in the module were mainly enriched in the biological processes such as the interaction between cytokines and cytokine receptors and chemokine signaling pathway. The genes in the related modules of differentially expressed genes and WGCNA traits were intersected to obtain the core hub genes. Protein-protein interaction network analysis showed that the key genes were upregulated genes CCR7 and CCL19. In terms of molecular docking, triptolide, the active component in the traditional anti-inflammatory drug Tripterygium wilfordii, can form effective molecular binding with both core hub genes.

Conclusions

Our study identified the core hub genes CCR7 and CCL19, which acted as essential components in interstitial cystitis/bladder pain syndrome. Furthermore, CCR7 and CCL19 can form effective binding with triptolide, which will provide new insights into the development of new therapies for interstitial cystitis/bladder pain syndrome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Homma Y, Akiyama Y, Tomoe H, Furuta A, Ueda T, Maeda D, Lin AT, Kuo HC, Lee MH, Oh SJ. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int J Urol. 2020;27(7):578–89.CrossRef Homma Y, Akiyama Y, Tomoe H, Furuta A, Ueda T, Maeda D, Lin AT, Kuo HC, Lee MH, Oh SJ. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int J Urol. 2020;27(7):578–89.CrossRef
2.
go back to reference Patnaik SS, Laganà AS, Vitale SG, Butticè S, Noventa M, Gizzo S, Valenti G, Rapisarda AMC, La Rosa VL, Magno C. Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Arch Gynecol Obstet. 2017;295(6):1341–59.CrossRef Patnaik SS, Laganà AS, Vitale SG, Butticè S, Noventa M, Gizzo S, Valenti G, Rapisarda AMC, La Rosa VL, Magno C. Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Arch Gynecol Obstet. 2017;295(6):1341–59.CrossRef
3.
go back to reference Akiyama Y, Luo Y, Hanno PM, Maeda D, Homma Y. Interstitial cystitis/bladder pain syndrome: the evolving landscape, animal models and future perspectives. Int J Urol. 2020;27(6):491–503.CrossRef Akiyama Y, Luo Y, Hanno PM, Maeda D, Homma Y. Interstitial cystitis/bladder pain syndrome: the evolving landscape, animal models and future perspectives. Int J Urol. 2020;27(6):491–503.CrossRef
4.
go back to reference Ueda T, Hanno PM, Saito R, Meijlink JM, Yoshimura N. Current understanding and future perspectives of interstitial cystitis/bladder pain syndrome. Int Neurourol J. 2021;25(2):99–110.CrossRef Ueda T, Hanno PM, Saito R, Meijlink JM, Yoshimura N. Current understanding and future perspectives of interstitial cystitis/bladder pain syndrome. Int Neurourol J. 2021;25(2):99–110.CrossRef
5.
go back to reference Osman NI, Bratt DG, Downey AP, Esperto F, Inman RD, Chapple CR. A systematic review of surgical interventions for the treatment of bladder pain syndrome/interstitial cystitis. European Urol Focus. 2020;7(4):877–85.CrossRef Osman NI, Bratt DG, Downey AP, Esperto F, Inman RD, Chapple CR. A systematic review of surgical interventions for the treatment of bladder pain syndrome/interstitial cystitis. European Urol Focus. 2020;7(4):877–85.CrossRef
6.
go back to reference Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Method Enzymol. 2017;585:135–58.CrossRef Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Method Enzymol. 2017;585:135–58.CrossRef
7.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):1–13.CrossRef Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):1–13.CrossRef
8.
go back to reference Gamper M, Viereck V, Geissbühler V, Eberhard J, Binder J, Moll C, Rehrauer H, Moser R. Gene expression profile of bladder tissue of patients with ulcerative interstitial cystitis. BMC Genomics. 2009;10(1):1–17.CrossRef Gamper M, Viereck V, Geissbühler V, Eberhard J, Binder J, Moll C, Rehrauer H, Moser R. Gene expression profile of bladder tissue of patients with ulcerative interstitial cystitis. BMC Genomics. 2009;10(1):1–17.CrossRef
9.
go back to reference Shengzhuo L, Shijian F, Deyi L. Analysis of key genes and micro-RNA-mRNA regulatory networks in women with ulcerative interstitial cystitis/pain bladder syndrome. Int Urogynecol J. 2018;30(9):1487–95. Shengzhuo L, Shijian F, Deyi L. Analysis of key genes and micro-RNA-mRNA regulatory networks in women with ulcerative interstitial cystitis/pain bladder syndrome. Int Urogynecol J. 2018;30(9):1487–95.
10.
go back to reference Saha SK, Jeon TI, Jang SB, Kim J, Cho SG. Bioinformatics approach for identifying novel biomarkers and their signaling pathways involved in interstitial cystitis/bladder pain syndrome with Hunner lesion. J Clin Med. 2020;9(6):1935.CrossRef Saha SK, Jeon TI, Jang SB, Kim J, Cho SG. Bioinformatics approach for identifying novel biomarkers and their signaling pathways involved in interstitial cystitis/bladder pain syndrome with Hunner lesion. J Clin Med. 2020;9(6):1935.CrossRef
11.
go back to reference Wu H, Su QX, Zhang ZY, Zhang Z, Gao SL, Lu C, Zuo L, Zhang LF. Exploration of the core genes in ulcerative interstitial cystitis/bladder pain syndrome. Int Braz J Urol. 2021;47(4):843–55.CrossRef Wu H, Su QX, Zhang ZY, Zhang Z, Gao SL, Lu C, Zuo L, Zhang LF. Exploration of the core genes in ulcerative interstitial cystitis/bladder pain syndrome. Int Braz J Urol. 2021;47(4):843–55.CrossRef
12.
go back to reference Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk CS, Kremmer E, Förster R. The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cell Mol Immunol. 2019;16(10):791–9.CrossRef Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk CS, Kremmer E, Förster R. The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cell Mol Immunol. 2019;16(10):791–9.CrossRef
13.
go back to reference Gonzalez EJ, Arms L, Vizzard MA. The role (s) of cytokines/chemokines in urinary bladder inflammation and dysfunction. Biomed Res Int. 2014;2014:1–17. Gonzalez EJ, Arms L, Vizzard MA. The role (s) of cytokines/chemokines in urinary bladder inflammation and dysfunction. Biomed Res Int. 2014;2014:1–17.
14.
go back to reference Tyagi P, Killinger K, Tyagi V, Nirmal J, Chancellor M, Peters KM. Urinary chemokines as noninvasive predictors of ulcerative interstitial cystitis. J Urol. 2012;187(6):2243–8.CrossRef Tyagi P, Killinger K, Tyagi V, Nirmal J, Chancellor M, Peters KM. Urinary chemokines as noninvasive predictors of ulcerative interstitial cystitis. J Urol. 2012;187(6):2243–8.CrossRef
15.
go back to reference Tyagi P, Nikolavsky D, Vodovotz Y, Barclay D, Tyagi V, Peters KM, Chancellor MB. Urine levels of selected chemokines positively correlate with lower bladder capacity and psychometric scores in IC/PBS patients. J Urol. 2009;181(4):21.CrossRef Tyagi P, Nikolavsky D, Vodovotz Y, Barclay D, Tyagi V, Peters KM, Chancellor MB. Urine levels of selected chemokines positively correlate with lower bladder capacity and psychometric scores in IC/PBS patients. J Urol. 2009;181(4):21.CrossRef
16.
go back to reference Niimi A, Igawa Y, Aizawa N, Honma T, Nomiya A, Akiyama Y, Kamei J, Fujimura T, Fukuhara H, Homma Y. Diagnostic value of urinary CXCL10 as a biomarker for predicting Hunner type interstitial cystitis. Neurourol Urodynam. 2018;37(3):1113–9.CrossRef Niimi A, Igawa Y, Aizawa N, Honma T, Nomiya A, Akiyama Y, Kamei J, Fujimura T, Fukuhara H, Homma Y. Diagnostic value of urinary CXCL10 as a biomarker for predicting Hunner type interstitial cystitis. Neurourol Urodynam. 2018;37(3):1113–9.CrossRef
17.
go back to reference Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, Hu Q. CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Front Cell Dev Biol. 2019;7:212–4.CrossRef Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, Hu Q. CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Front Cell Dev Biol. 2019;7:212–4.CrossRef
18.
go back to reference Comerford I, Harata-Lee Y, Bunting MD, Gregor C, Kara EE, McColl SR. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth F R. 2013;24(3):269–83.CrossRef Comerford I, Harata-Lee Y, Bunting MD, Gregor C, Kara EE, McColl SR. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth F R. 2013;24(3):269–83.CrossRef
19.
go back to reference Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol. 2016;99(6):869–82.CrossRef Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol. 2016;99(6):869–82.CrossRef
20.
go back to reference Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K, Kremmer E, Sixt M, Hoffmeyer A, Pabst O. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity. 2011;35(6):945–57.CrossRef Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K, Kremmer E, Sixt M, Hoffmeyer A, Pabst O. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity. 2011;35(6):945–57.CrossRef
21.
go back to reference Hou W, Liu B, Xu H. Triptolide: medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem. 2019;176:378–92.CrossRef Hou W, Liu B, Xu H. Triptolide: medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem. 2019;176:378–92.CrossRef
22.
go back to reference Yuan K, Li X, Lu Q, Zhu Q, Jiang H, Wang T, Huang G, Xu A. Application and mechanisms of triptolide in the treatment of inflammatory diseases-a review. Front Pharmacol. 2019;10:1469.CrossRef Yuan K, Li X, Lu Q, Zhu Q, Jiang H, Wang T, Huang G, Xu A. Application and mechanisms of triptolide in the treatment of inflammatory diseases-a review. Front Pharmacol. 2019;10:1469.CrossRef
23.
go back to reference Matta R, Wang X, Ge H, Ray W, Nelin LD, Liu Y. Triptolide induces anti-inflammatory cellular responses. Am J Transl Res. 2009;1(3):267–82.PubMedPubMedCentral Matta R, Wang X, Ge H, Ray W, Nelin LD, Liu Y. Triptolide induces anti-inflammatory cellular responses. Am J Transl Res. 2009;1(3):267–82.PubMedPubMedCentral
24.
go back to reference Yifan W, Dengming W, Zheng L, Yanping L, Junkan S. Triptolide inhibits CCR5 expressed in synovial tissue of rat adjuvant-induced arthritis. Pharmacol Rep. 2007;59(6):795–9.PubMed Yifan W, Dengming W, Zheng L, Yanping L, Junkan S. Triptolide inhibits CCR5 expressed in synovial tissue of rat adjuvant-induced arthritis. Pharmacol Rep. 2007;59(6):795–9.PubMed
25.
go back to reference Lu Y, Fukuda K, Nakamura Y, Kimura K, Kumagai N, Nishida T. Inhibitory effect of triptolide on chemokine expression induced by proinflammatory cytokines in human corneal fibroblasts. Invest Ophth Vis Sci. 2005;46(7):2346–52.CrossRef Lu Y, Fukuda K, Nakamura Y, Kimura K, Kumagai N, Nishida T. Inhibitory effect of triptolide on chemokine expression induced by proinflammatory cytokines in human corneal fibroblasts. Invest Ophth Vis Sci. 2005;46(7):2346–52.CrossRef
26.
go back to reference Tong L, Zhao Q, Datan E, Lin G, Minn I, Pomper MG, Yu B, Romo D, He Q, Liu JO. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep. 2021;38(4):843–60.CrossRef Tong L, Zhao Q, Datan E, Lin G, Minn I, Pomper MG, Yu B, Romo D, He Q, Liu JO. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep. 2021;38(4):843–60.CrossRef
27.
28.
go back to reference Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018;9:923.CrossRef Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018;9:923.CrossRef
Metadata
Title
WGCNA and molecular docking reveal key hub genes and potential natural inhibitor in interstitial cystitis/bladder pain syndrome
Authors
Kuiqing Li
Cong Lai
Cheng Liu
Zhuohang Li
Kaixuan Guo
Kewei Xu
Publication date
25-03-2022
Publisher
Springer International Publishing
Published in
International Urogynecology Journal / Issue 8/2022
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-022-05113-9

Other articles of this Issue 8/2022

International Urogynecology Journal 8/2022 Go to the issue