Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Cystic Kidney Disease | Research

Primary URECs: a source to better understand the pathology of renal tubular epithelia in pediatric hereditary cystic kidney diseases

Authors: Wolfgang H. Ziegler, Sarah Lüdiger, Fatima Hassan, Margarita E. Georgiadis, Kathrin Swolana, Amrit Khera, Arne Mertens, Doris Franke, Kai Wohlgemuth, Mareike Dahmer-Heath, Jens König, Claudia Dafinger, Max C. Liebau, Metin Cetiner, Carsten Bergmann, Birga Soetje, Dieter Haffner

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Background

In pediatric hereditary cystic kidney diseases, epithelial cell defects mostly result from rare, autosomal recessively inherited pathogenic variants in genes encoding proteins of the cilia-centrosome complex. Consequences of individual gene variants on epithelial function are often difficult to predict and can furthermore depend on the patient’s genetic background. Here, we studied urine-derived renal tubular epithelial cells (URECs) from genetically determined, pediatric cohorts of different hereditary cystic kidney diseases, comprising autosomal recessive polycystic kidney disease, nephronophthisis (NPH) and the Bardet Biedl syndrome (BBS). UREC characteristics and behavior in epithelial function-related 3D cell culture were compared in order to identify gene and variant-specific properties and to determine aspects of epithelial (cell) dysfunction.

Results

UREC preparations from patients (19) and healthy controls (39) were studied in a qualitative and quantitative manner using primary cells cultured for up-to 21 days. In patients with biallelic pathogenic variants in PKHD1 or NPHP genes, we were able to receive satisfactory amounts of URECs of reproducible quality. In BBS patients, UREC yield was lower and more dependent on the individual genotype. In contrast, in UREC preparations derived from healthy controls, no predictable and satisfactory outcome could be established. Considering cell proliferation, tubular origin and epithelial properties in 2D/3D culture conditions, we observed distinct and reproducible epithelial properties of URECs. In particular, the cells from patients carrying PKHD1 variants were characterized by a high incidence of defective morphogenesis of monolayered spheroids—a property proposed to be suitable for corrective intervention. Furthermore, we explored different ways to generate reference cell lines for both—patients and healthy controls—in order to eliminate restrictions in cell number and availability of primary URECs.

Conclusions

Ex vivo 3D cell culture of primary URECs represents a valuable, non-invasive source to evaluate epithelial cell function in kidney diseases and as such helps to elucidate the functional consequences of rare genetic disorders. In combination with genetically defined control cell lines to be generated in the future, the cultivation of primary URECs could become a relevant tool for testing personalized treatment of epithelial dysfunction in patients with hereditary cystic kidney disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.CrossRef Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.CrossRef
2.
go back to reference Braun DA, Hildebrandt F. Ciliopathies. Cold Spring Harb Perspect Biol. 2017;9(3):a028191.CrossRef Braun DA, Hildebrandt F. Ciliopathies. Cold Spring Harb Perspect Biol. 2017;9(3):a028191.CrossRef
3.
go back to reference McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the kidney: a review. Am J Kidney Dis. 2021;77(3):410–9.CrossRef McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the kidney: a review. Am J Kidney Dis. 2021;77(3):410–9.CrossRef
4.
go back to reference Wolf MT, Hildebrandt F. Nephronophthisis. Pediatr Nephrol. 2011;26(2):181–94.CrossRef Wolf MT, Hildebrandt F. Nephronophthisis. Pediatr Nephrol. 2011;26(2):181–94.CrossRef
5.
go back to reference Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.CrossRef Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.CrossRef
6.
go back to reference Burgmaier K, Brinker L, Erger F, Beck BB, Benz MR, Bergmann C, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int. 2021;100(3):650–9.CrossRef Burgmaier K, Brinker L, Erger F, Beck BB, Benz MR, Bergmann C, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int. 2021;100(3):650–9.CrossRef
7.
go back to reference Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2017;5:221.CrossRef Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2017;5:221.CrossRef
8.
go back to reference Olson RJ, Hopp K, Wells H, Smith JM, Furtado J, Constans MM, et al. Synergistic genetic interactions between Pkhd1 and Pkd1 result in an ARPKD-LIKE PHENOTYPE IN MURINE MODELS. J Am Soc Nephrol. 2019;30(11):2113–27.CrossRef Olson RJ, Hopp K, Wells H, Smith JM, Furtado J, Constans MM, et al. Synergistic genetic interactions between Pkhd1 and Pkd1 result in an ARPKD-LIKE PHENOTYPE IN MURINE MODELS. J Am Soc Nephrol. 2019;30(11):2113–27.CrossRef
9.
go back to reference Muller RU, Schermer B. Hippo signaling-a central player in cystic kidney disease? Pediatr Nephrol. 2020;35(7):1143–52.CrossRef Muller RU, Schermer B. Hippo signaling-a central player in cystic kidney disease? Pediatr Nephrol. 2020;35(7):1143–52.CrossRef
10.
go back to reference Dorrenhaus A, Muller JI, Golka K, Jedrusik P, Schulze H, Follmann W. Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system. Arch Toxicol. 2000;74(10):618–26.CrossRef Dorrenhaus A, Muller JI, Golka K, Jedrusik P, Schulze H, Follmann W. Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system. Arch Toxicol. 2000;74(10):618–26.CrossRef
11.
go back to reference Ajzenberg H, Slaats GG, Stokman MF, Arts HH, Logister I, Kroes HY, et al. Non-invasive sources of cells with primary cilia from pediatric and adult patients. Cilia. 2015;4:8.CrossRef Ajzenberg H, Slaats GG, Stokman MF, Arts HH, Logister I, Kroes HY, et al. Non-invasive sources of cells with primary cilia from pediatric and adult patients. Cilia. 2015;4:8.CrossRef
12.
go back to reference Molinari E, Decker E, Mabillard H, Tellez J, Srivastava S, Raman S, et al. Human urine-derived renal epithelial cells provide insights into kidney-specific alternate splicing variants. Eur J Hum Genet. 2018;26(12):1791–6.CrossRef Molinari E, Decker E, Mabillard H, Tellez J, Srivastava S, Raman S, et al. Human urine-derived renal epithelial cells provide insights into kidney-specific alternate splicing variants. Eur J Hum Genet. 2018;26(12):1791–6.CrossRef
13.
go back to reference Molinari E, Srivastava S, Dewhurst RM, Sayer JA. Use of patient derived urine renal epithelial cells to confirm pathogenicity of PKHD1 alleles. BMC Nephrol. 2020;21(1):435.CrossRef Molinari E, Srivastava S, Dewhurst RM, Sayer JA. Use of patient derived urine renal epithelial cells to confirm pathogenicity of PKHD1 alleles. BMC Nephrol. 2020;21(1):435.CrossRef
14.
go back to reference Bergmann C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol. 2015;30(1):15–30.CrossRef Bergmann C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol. 2015;30(1):15–30.CrossRef
15.
go back to reference Rodriguez-Fraticelli AE, Auzan M, Alonso MA, Bornens M, Martin-Belmonte F. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J Cell Biol. 2012;198(6):1011–23.CrossRef Rodriguez-Fraticelli AE, Auzan M, Alonso MA, Bornens M, Martin-Belmonte F. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J Cell Biol. 2012;198(6):1011–23.CrossRef
16.
go back to reference Ghosh AK, Hurd T, Hildebrandt F. 3D spheroid defects in NPHP knockdown cells are rescued by the somatostatin receptor agonist octreotide. Am J Physiol Renal Physiol. 2012;303(8):F1225–9.CrossRef Ghosh AK, Hurd T, Hildebrandt F. 3D spheroid defects in NPHP knockdown cells are rescued by the somatostatin receptor agonist octreotide. Am J Physiol Renal Physiol. 2012;303(8):F1225–9.CrossRef
17.
go back to reference Buchholz B, Schley G, Faria D, Kroening S, Willam C, Schreiber R, et al. Hypoxia-inducible factor-1alpha causes renal cyst expansion through calcium-activated chloride secretion. J Am Soc Nephrol. 2014;25(3):465–74.CrossRef Buchholz B, Schley G, Faria D, Kroening S, Willam C, Schreiber R, et al. Hypoxia-inducible factor-1alpha causes renal cyst expansion through calcium-activated chloride secretion. J Am Soc Nephrol. 2014;25(3):465–74.CrossRef
18.
go back to reference Cabrita I, Kraus A, Scholz JK, Skoczynski K, Schreiber R, Kunzelmann K, et al. Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nat Commun. 2020;11(1):4320.CrossRef Cabrita I, Kraus A, Scholz JK, Skoczynski K, Schreiber R, Kunzelmann K, et al. Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nat Commun. 2020;11(1):4320.CrossRef
19.
go back to reference Konig JC, Titieni A, Konrad M, Consortium N. Network for early onset cystic kidney diseases-a comprehensive multidisciplinary approach to hereditary cystic kidney diseases in childhood. Front Pediatr. 2018;6:24.CrossRef Konig JC, Titieni A, Konrad M, Consortium N. Network for early onset cystic kidney diseases-a comprehensive multidisciplinary approach to hereditary cystic kidney diseases in childhood. Front Pediatr. 2018;6:24.CrossRef
20.
go back to reference Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.CrossRef Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.CrossRef
21.
go back to reference Scholbach T, Weitzel D. Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica (Cairo). 2012;2012:949164. Scholbach T, Weitzel D. Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica (Cairo). 2012;2012:949164.
22.
go back to reference Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;7(12):2080–9.CrossRef Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;7(12):2080–9.CrossRef
23.
go back to reference Ziegler WH, Soetje B, Marten LP, Wiese J, Burute M, Haffner D. Fibrocystin is essential to cellular control of adhesion and epithelial morphogenesis. Int J Mol Sci. 2020;21(14):5140.CrossRef Ziegler WH, Soetje B, Marten LP, Wiese J, Burute M, Haffner D. Fibrocystin is essential to cellular control of adhesion and epithelial morphogenesis. Int J Mol Sci. 2020;21(14):5140.CrossRef
24.
go back to reference Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.CrossRef Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.CrossRef
25.
go back to reference Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 2017;16(11):1112–9.CrossRef Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 2017;16(11):1112–9.CrossRef
26.
go back to reference Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell. 2019;25(3):373–87.CrossRef Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell. 2019;25(3):373–87.CrossRef
27.
go back to reference Hynes AM, Giles RH, Srivastava S, Eley L, Whitehead J, Danilenko M, et al. Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci USA. 2014;111(27):9893–8.CrossRef Hynes AM, Giles RH, Srivastava S, Eley L, Whitehead J, Danilenko M, et al. Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci USA. 2014;111(27):9893–8.CrossRef
28.
go back to reference Nadasdy T, Laszik Z, Lajoie G, Blick KE, Wheeler DE, Silva FG. Proliferative activity of cyst epithelium in human renal cystic diseases. J Am Soc Nephrol. 1995;5(7):1462–8.CrossRef Nadasdy T, Laszik Z, Lajoie G, Blick KE, Wheeler DE, Silva FG. Proliferative activity of cyst epithelium in human renal cystic diseases. J Am Soc Nephrol. 1995;5(7):1462–8.CrossRef
29.
30.
go back to reference Hu B, He X, Li A, Qiu Q, Li C, Liang D, et al. Cystogenesis in ARPKD results from increased apoptosis in collecting duct epithelial cells of Pkhd1 mutant kidneys. Exp Cell Res. 2011;317(2):173–87.CrossRef Hu B, He X, Li A, Qiu Q, Li C, Liang D, et al. Cystogenesis in ARPKD results from increased apoptosis in collecting duct epithelial cells of Pkhd1 mutant kidneys. Exp Cell Res. 2011;317(2):173–87.CrossRef
31.
go back to reference Abedini A, Zhu YO, Chatterjee S, Halasz G, Devalaraja-Narashimha K, Shrestha R, et al. Urinary single-cell profiling captures the cellular diversity of the kidney. J Am Soc Nephrol. 2021;32(3):614–27.CrossRef Abedini A, Zhu YO, Chatterjee S, Halasz G, Devalaraja-Narashimha K, Shrestha R, et al. Urinary single-cell profiling captures the cellular diversity of the kidney. J Am Soc Nephrol. 2021;32(3):614–27.CrossRef
32.
go back to reference Matsuzaki T, Yaguchi T, Shimizu K, Kita A, Ishibashi K, Takata K. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int. 2017;92(2):187–99.CrossRef Matsuzaki T, Yaguchi T, Shimizu K, Kita A, Ishibashi K, Takata K. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int. 2017;92(2):187–99.CrossRef
33.
go back to reference Soetje B, Fuellekrug J, Haffner D, Ziegler WH. Application and comparison of supervised learning strategies to classify polarity of epithelial cell spheroids in 3D culture. Front Genet. 2020;11:248.CrossRef Soetje B, Fuellekrug J, Haffner D, Ziegler WH. Application and comparison of supervised learning strategies to classify polarity of epithelial cell spheroids in 3D culture. Front Genet. 2020;11:248.CrossRef
34.
go back to reference Giles RH, Ajzenberg H, Jackson PK. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat Protoc. 2014;9(12):2725–31.CrossRef Giles RH, Ajzenberg H, Jackson PK. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat Protoc. 2014;9(12):2725–31.CrossRef
35.
go back to reference Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG, et al. Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res. 2010;339(2):449–57.CrossRef Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG, et al. Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res. 2010;339(2):449–57.CrossRef
36.
go back to reference Israeli S, Amsler K, Zheleznova N, Wilson PD. Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells. Am J Physiol Cell Physiol. 2010;298(4):C831–46.CrossRef Israeli S, Amsler K, Zheleznova N, Wilson PD. Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells. Am J Physiol Cell Physiol. 2010;298(4):C831–46.CrossRef
37.
go back to reference Rowe I, Boletta A. Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol Dial Transplant. 2014;29(8):1480–6.CrossRef Rowe I, Boletta A. Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol Dial Transplant. 2014;29(8):1480–6.CrossRef
38.
go back to reference Torres JA, Kruger SL, Broderick C, Amarlkhagva T, Agrawal S, Dodam JR, et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 2019;30(6):1007–23.CrossRef Torres JA, Kruger SL, Broderick C, Amarlkhagva T, Agrawal S, Dodam JR, et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 2019;30(6):1007–23.CrossRef
39.
go back to reference Lipps C, Klein F, Wahlicht T, Seiffert V, Butueva M, Zauers J, et al. Expansion of functional personalized cells with specific transgene combinations. Nat Commun. 2018;9(1):994.CrossRef Lipps C, Klein F, Wahlicht T, Seiffert V, Butueva M, Zauers J, et al. Expansion of functional personalized cells with specific transgene combinations. Nat Commun. 2018;9(1):994.CrossRef
Metadata
Title
Primary URECs: a source to better understand the pathology of renal tubular epithelia in pediatric hereditary cystic kidney diseases
Authors
Wolfgang H. Ziegler
Sarah Lüdiger
Fatima Hassan
Margarita E. Georgiadis
Kathrin Swolana
Amrit Khera
Arne Mertens
Doris Franke
Kai Wohlgemuth
Mareike Dahmer-Heath
Jens König
Claudia Dafinger
Max C. Liebau
Metin Cetiner
Carsten Bergmann
Birga Soetje
Dieter Haffner
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02265-1

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue