Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Cystic Fibrosis | Critical Review

Dynamic chest radiography: a state-of-the-art review

Authors: Fred Fyles, Thomas S. FitzMaurice, Ryan E. Robinson, Ram Bedi, Hassan Burhan, Martin J. Walshaw

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Dynamic chest radiography (DCR) is a real-time sequential high-resolution digital X-ray imaging system of the thorax in motion over the respiratory cycle, utilising pulsed image exposure and a larger field of view than fluoroscopy coupled with a low radiation dose, where post-acquisition image processing by computer algorithm automatically characterises the motion of thoracic structures. We conducted a systematic review of the literature and found 29 relevant publications describing its use in humans including the assessment of diaphragm and chest wall motion, measurement of pulmonary ventilation and perfusion, and the assessment of airway narrowing. Work is ongoing in several other areas including assessment of diaphragmatic paralysis. We assess the findings, methodology and limitations of DCR, and we discuss the current and future roles of this promising medical imaging technology.
Critical relevance statement Dynamic chest radiography provides a wealth of clinical information, but further research is required to identify its clinical niche.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Tanaka R, Sanada S, Suzuki M, Matsui T, Uoyama Y (2002) New method of screening chest radiography with computer analysis of respiratory kinetics. Nihon Hoshasen Gijutsu Gakkai Zasshi 58(5):665–669PubMedCrossRef Tanaka R, Sanada S, Suzuki M, Matsui T, Uoyama Y (2002) New method of screening chest radiography with computer analysis of respiratory kinetics. Nihon Hoshasen Gijutsu Gakkai Zasshi 58(5):665–669PubMedCrossRef
2.
go back to reference Sanada S, Tanaka R, Kobayashi T, Suzuki M, Inoue H (2003) Screening chest X-ray examination with kinetic analysis using flat-panel detector. Nippon Igaku Hoshasen Gakkai Zasshi 63(9):579–581PubMed Sanada S, Tanaka R, Kobayashi T, Suzuki M, Inoue H (2003) Screening chest X-ray examination with kinetic analysis using flat-panel detector. Nippon Igaku Hoshasen Gakkai Zasshi 63(9):579–581PubMed
3.
go back to reference Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Inoue H (2003) Development of breathing chest radiography: study of exposure timing. Nihon Hoshasen Gijutsu Gakkai Zasshi 59(8):984–992PubMedCrossRef Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Inoue H (2003) Development of breathing chest radiography: study of exposure timing. Nihon Hoshasen Gijutsu Gakkai Zasshi 59(8):984–992PubMedCrossRef
4.
go back to reference Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Matsui O (2006) Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system. J Digit Imaging 19(1):41–51PubMedPubMedCentralCrossRef Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Matsui O (2006) Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system. J Digit Imaging 19(1):41–51PubMedPubMedCentralCrossRef
5.
go back to reference Tanaka R, Sanada S, Fujimura M et al (2009) Pulmonary blood flow evaluation using a dynamic flat-panel detector: feasibility study with pulmonary diseases. Int J Comput Assist Radiol Surg 4(5):449–455PubMedCrossRef Tanaka R, Sanada S, Fujimura M et al (2009) Pulmonary blood flow evaluation using a dynamic flat-panel detector: feasibility study with pulmonary diseases. Int J Comput Assist Radiol Surg 4(5):449–455PubMedCrossRef
6.
go back to reference Weissman C, Askanazi J, Milic-Emili J, Kinney JM (1984) Effect of respiratory apparatus on respiration. J Appl Physiol Respir Environ Exerc Physiol 57(2):475–480PubMed Weissman C, Askanazi J, Milic-Emili J, Kinney JM (1984) Effect of respiratory apparatus on respiration. J Appl Physiol Respir Environ Exerc Physiol 57(2):475–480PubMed
7.
go back to reference Han JN, Stegen K, Cauberghs M, Van de Woestijne KP (1997) Influence of awareness of the recording of breathing on respiratory pattern in healthy humans. Eur Respir J 10(1):161–166PubMedCrossRef Han JN, Stegen K, Cauberghs M, Van de Woestijne KP (1997) Influence of awareness of the recording of breathing on respiratory pattern in healthy humans. Eur Respir J 10(1):161–166PubMedCrossRef
8.
go back to reference Tanaka R, Sanada S, Okazaki N et al (2006) Evaluation of pulmonary function using breathing chest radiography with a dynamic flat panel detector: primary results in pulmonary diseases. Invest Radiol 41(10):735–745PubMedCrossRef Tanaka R, Sanada S, Okazaki N et al (2006) Evaluation of pulmonary function using breathing chest radiography with a dynamic flat panel detector: primary results in pulmonary diseases. Invest Radiol 41(10):735–745PubMedCrossRef
9.
go back to reference Tanaka R, Sanada S, Okazaki N et al (2008) Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography. J Digit Imaging 21(1):109–120PubMedCrossRef Tanaka R, Sanada S, Okazaki N et al (2008) Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography. J Digit Imaging 21(1):109–120PubMedCrossRef
10.
go back to reference Tanaka R, Sanada S, Fujimura M et al (2008) Development of functional chest imaging with a dynamic flat-panel detector (FPD). Radiol Phys Technol 1(2):137–143PubMedCrossRef Tanaka R, Sanada S, Fujimura M et al (2008) Development of functional chest imaging with a dynamic flat-panel detector (FPD). Radiol Phys Technol 1(2):137–143PubMedCrossRef
11.
go back to reference Kawashima H, Tanaka R, Sanada S (2009) Reproducibility of dynamic chest radiography with a flat-panel detector-respiratory changes in pixel value. Nihon Hoshasen Gijutsu Gakkai Zasshi 65(6):738–744PubMedCrossRef Kawashima H, Tanaka R, Sanada S (2009) Reproducibility of dynamic chest radiography with a flat-panel detector-respiratory changes in pixel value. Nihon Hoshasen Gijutsu Gakkai Zasshi 65(6):738–744PubMedCrossRef
12.
go back to reference Tanaka R, Sanada S, Fujimura M et al (2010) Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector: quantitative correlation analysis with findings on perfusion scan. Radiol Phys Technol 3(1):40–45PubMedCrossRef Tanaka R, Sanada S, Fujimura M et al (2010) Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector: quantitative correlation analysis with findings on perfusion scan. Radiol Phys Technol 3(1):40–45PubMedCrossRef
13.
go back to reference Tsuchiya Y, Kodera Y, Tanaka R, Sanada S (2009) Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector. J Digit Imaging 22(2):126–135PubMedCrossRef Tsuchiya Y, Kodera Y, Tanaka R, Sanada S (2009) Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector. J Digit Imaging 22(2):126–135PubMedCrossRef
14.
go back to reference Tanaka R, Sanada S, Fujimura M et al (2011) Ventilatory impairment detection based on distribution of respiratory-induced changes in pixel values in dynamic chest radiography: a feasibility study. Int J Comput Assist Radiol Surg 6(1):103–110PubMedCrossRef Tanaka R, Sanada S, Fujimura M et al (2011) Ventilatory impairment detection based on distribution of respiratory-induced changes in pixel values in dynamic chest radiography: a feasibility study. Int J Comput Assist Radiol Surg 6(1):103–110PubMedCrossRef
15.
go back to reference Tanaka R, Sanada S, Sakuta K, Kawashima H (2015) Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results. J Med Imaging (Bellingham) 2(2):024002PubMedCrossRef Tanaka R, Sanada S, Sakuta K, Kawashima H (2015) Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results. J Med Imaging (Bellingham) 2(2):024002PubMedCrossRef
16.
go back to reference Yamada Y, Ueyama M, Abe T et al (2017) Time-resolved quantitative analysis of the diaphragms during tidal breathing in a standing position using dynamic chest radiography with a flat panel detector system (“dynamic X-ray phrenicography”): initial experience in 172 volunteers. Acad Radiol 24(4):393–400PubMedCrossRef Yamada Y, Ueyama M, Abe T et al (2017) Time-resolved quantitative analysis of the diaphragms during tidal breathing in a standing position using dynamic chest radiography with a flat panel detector system (“dynamic X-ray phrenicography”): initial experience in 172 volunteers. Acad Radiol 24(4):393–400PubMedCrossRef
17.
go back to reference Tanaka R, Matsuda H, Sanada S (2017) Time-series analysis of lung texture on bone-suppressed dynamic chest radiograph for the evaluation of pulmonary function: a preliminary study: SPIE Tanaka R, Matsuda H, Sanada S (2017) Time-series analysis of lung texture on bone-suppressed dynamic chest radiograph for the evaluation of pulmonary function: a preliminary study: SPIE
18.
go back to reference Yamada Y, Ueyama M, Abe T et al (2017) Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”). Eur J Radiol 87:76–82PubMedCrossRef Yamada Y, Ueyama M, Abe T et al (2017) Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”). Eur J Radiol 87:76–82PubMedCrossRef
19.
go back to reference Yamada Y, Ueyama M, Abe T et al (2017) Difference in the craniocaudal gradient of the maximum pixel value change rate between chronic obstructive pulmonary disease patients and normal subjects using sub-mGy dynamic chest radiography with a flat panel detector system. Eur J Radiol 92:37–44PubMedCrossRef Yamada Y, Ueyama M, Abe T et al (2017) Difference in the craniocaudal gradient of the maximum pixel value change rate between chronic obstructive pulmonary disease patients and normal subjects using sub-mGy dynamic chest radiography with a flat panel detector system. Eur J Radiol 92:37–44PubMedCrossRef
20.
go back to reference Hida T, Yamada Y, Ueyama M et al (2019) Time-resolved quantitative evaluation of diaphragmatic motion during forced breathing in a health screening cohort in a standing position: dynamic chest phrenicography. Eur J Radiol 113:59–65PubMedCrossRef Hida T, Yamada Y, Ueyama M et al (2019) Time-resolved quantitative evaluation of diaphragmatic motion during forced breathing in a health screening cohort in a standing position: dynamic chest phrenicography. Eur J Radiol 113:59–65PubMedCrossRef
21.
go back to reference Hida T, Yamada Y, Ueyama M et al (2019) Decreased and slower diaphragmatic motion during forced breathing in severe COPD patients: time-resolved quantitative analysis using dynamic chest radiography with a flat panel detector system. Eur J Radiol 112:28–36PubMedCrossRef Hida T, Yamada Y, Ueyama M et al (2019) Decreased and slower diaphragmatic motion during forced breathing in severe COPD patients: time-resolved quantitative analysis using dynamic chest radiography with a flat panel detector system. Eur J Radiol 112:28–36PubMedCrossRef
22.
go back to reference Kitahara Y, Tanaka R, Roth HR, Oda H, Mori K, Kasahara K et al (eds) (2019) Lung segmentation based on a deep learning approach for dynamic chest radiography. Medical Imaging 2019: Computer-Aided Diagnosis; 01 Mar 2019 Kitahara Y, Tanaka R, Roth HR, Oda H, Mori K, Kasahara K et al (eds) (2019) Lung segmentation based on a deep learning approach for dynamic chest radiography. Medical Imaging 2019: Computer-Aided Diagnosis; 01 Mar 2019
23.
go back to reference Hanaoka J, Yoden M, Hayashi K et al (2021) Dynamic perfusion digital radiography for predicting pulmonary function after lung cancer resection. World J Surg Oncol 19(1):43PubMedPubMedCentralCrossRef Hanaoka J, Yoden M, Hayashi K et al (2021) Dynamic perfusion digital radiography for predicting pulmonary function after lung cancer resection. World J Surg Oncol 19(1):43PubMedPubMedCentralCrossRef
25.
go back to reference Ohkura N, Kasahara K, Watanabe S et al (2020) Dynamic-ventilatory digital radiography in air flow limitation: a change in lung area reflects air trapping. Respiration 99(5):382–388PubMedCrossRef Ohkura N, Kasahara K, Watanabe S et al (2020) Dynamic-ventilatory digital radiography in air flow limitation: a change in lung area reflects air trapping. Respiration 99(5):382–388PubMedCrossRef
26.
go back to reference Tanaka R, Matsumoto I, Tamura M et al (2020) Comparison of dynamic flat-panel detector-based chest radiography with nuclear medicine ventilation–perfusion imaging for the evaluation of pulmonary function: a clinical validation study. Med Phys 47(10):4800–4809PubMedCrossRef Tanaka R, Matsumoto I, Tamura M et al (2020) Comparison of dynamic flat-panel detector-based chest radiography with nuclear medicine ventilation–perfusion imaging for the evaluation of pulmonary function: a clinical validation study. Med Phys 47(10):4800–4809PubMedCrossRef
27.
go back to reference Watase S, Sonoda A, Matsutani N et al (2020) Evaluation of intrathoracic tracheal narrowing in patients with obstructive ventilatory impairment using dynamic chest radiography: a preliminary study. Eur J Radiol 129:109141PubMedCrossRef Watase S, Sonoda A, Matsutani N et al (2020) Evaluation of intrathoracic tracheal narrowing in patients with obstructive ventilatory impairment using dynamic chest radiography: a preliminary study. Eur J Radiol 129:109141PubMedCrossRef
28.
go back to reference Yamamoto S, Hasebe T, Tomita K et al (2020) Pulmonary perfusion by chest digital dynamic radiography: comparison between breath-holding and deep-breathing acquisition. J Appl Clin Med Phys 21(11):247–255PubMedPubMedCentralCrossRef Yamamoto S, Hasebe T, Tomita K et al (2020) Pulmonary perfusion by chest digital dynamic radiography: comparison between breath-holding and deep-breathing acquisition. J Appl Clin Med Phys 21(11):247–255PubMedPubMedCentralCrossRef
29.
go back to reference FitzMaurice TS, McCann C, Nazareth D, Shaw M, McNamara PS, Walshaw MJ (2022) Measuring the effect of elexacaftor/tezacaftor/ivacaftor combination therapy on the respiratory pump in people with CF using dynamic chest radiography. J Cyst Fibros 21:1036–1041PubMedCrossRef FitzMaurice TS, McCann C, Nazareth D, Shaw M, McNamara PS, Walshaw MJ (2022) Measuring the effect of elexacaftor/tezacaftor/ivacaftor combination therapy on the respiratory pump in people with CF using dynamic chest radiography. J Cyst Fibros 21:1036–1041PubMedCrossRef
30.
go back to reference FitzMaurice TS, McCann C, Nazareth DS, Walshaw MJ (2022) Characterisation of hemidiaphragm dysfunction using dynamic chest radiography: a pilot study. ERJ Open Res 8(1):00343–02021PubMedPubMedCentralCrossRef FitzMaurice TS, McCann C, Nazareth DS, Walshaw MJ (2022) Characterisation of hemidiaphragm dysfunction using dynamic chest radiography: a pilot study. ERJ Open Res 8(1):00343–02021PubMedPubMedCentralCrossRef
31.
go back to reference Ohkura N, Tanaka R, Watanabe S et al (2021) Chest dynamic-ventilatory digital radiography in chronic obstructive or restrictive lung disease. Int J Chron Obstruct Pulmon Dis 16:1393–1399PubMedPubMedCentralCrossRef Ohkura N, Tanaka R, Watanabe S et al (2021) Chest dynamic-ventilatory digital radiography in chronic obstructive or restrictive lung disease. Int J Chron Obstruct Pulmon Dis 16:1393–1399PubMedPubMedCentralCrossRef
32.
go back to reference Tanaka R, Matsumoto I, Tamura M et al (2021) Dynamic chest radiography: clinical validation of ventilation and perfusion metrics derived from changes in radiographic lung density compared to nuclear medicine imaging. Quant Imaging Med Surg 11(9):4016–4027PubMedPubMedCentralCrossRef Tanaka R, Matsumoto I, Tamura M et al (2021) Dynamic chest radiography: clinical validation of ventilation and perfusion metrics derived from changes in radiographic lung density compared to nuclear medicine imaging. Quant Imaging Med Surg 11(9):4016–4027PubMedPubMedCentralCrossRef
33.
go back to reference Ueyama M, Hashimoto S, Takeda A et al (2021) Prediction of forced vital capacity with dynamic chest radiography in interstitial lung disease. Eur J Radiol 142:109866PubMedCrossRef Ueyama M, Hashimoto S, Takeda A et al (2021) Prediction of forced vital capacity with dynamic chest radiography in interstitial lung disease. Eur J Radiol 142:109866PubMedCrossRef
34.
go back to reference FitzMaurice TS, McCann C, Nazareth DS, McNamara PS, Walshaw MJ (2022) Use of dynamic chest radiography to assess treatment of pulmonary exacerbations in cystic fibrosis. Radiology 212641 FitzMaurice TS, McCann C, Nazareth DS, McNamara PS, Walshaw MJ (2022) Use of dynamic chest radiography to assess treatment of pulmonary exacerbations in cystic fibrosis. Radiology 212641
35.
go back to reference Hart D, Hillier MC, Shrimpton PC (2012) Doses to patients from radiographic and fluoroscopic X-ray imaging procedures in the UK: 2010 review (HPA-CRCE-034) Hart D, Hillier MC, Shrimpton PC (2012) Doses to patients from radiographic and fluoroscopic X-ray imaging procedures in the UK: 2010 review (HPA-CRCE-034)
36.
go back to reference Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76(5):393CrossRef Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76(5):393CrossRef
37.
go back to reference Wall BF, Haylock R, Jansen JTM, Hillier MC, Hart D, Shrimpton PC (2011) Radiation risks from medical X-ray examinations as a function of the age and sex of the patient (HPA-CRCE-028) Wall BF, Haylock R, Jansen JTM, Hillier MC, Hart D, Shrimpton PC (2011) Radiation risks from medical X-ray examinations as a function of the age and sex of the patient (HPA-CRCE-028)
38.
go back to reference Boussuges A, Finance J, Chaumet G, Brégeon F (2021) Diaphragmatic motion recorded by M-mode ultrasonography: limits of normality. ERJ Open Res 7(1):00714–02020PubMedPubMedCentralCrossRef Boussuges A, Finance J, Chaumet G, Brégeon F (2021) Diaphragmatic motion recorded by M-mode ultrasonography: limits of normality. ERJ Open Res 7(1):00714–02020PubMedPubMedCentralCrossRef
40.
go back to reference Motamedi-Fakhr S, Wilson RC, Iles R (2016) Tidal breathing patterns derived from structured light plethysmography in COPD patients compared with healthy subjects. Med Devices (Auckl) 10:1–9PubMedPubMedCentral Motamedi-Fakhr S, Wilson RC, Iles R (2016) Tidal breathing patterns derived from structured light plethysmography in COPD patients compared with healthy subjects. Med Devices (Auckl) 10:1–9PubMedPubMedCentral
41.
go back to reference Pratt PC, Klugh GA (1967) A method for the determination of total lung capacity from posteroanterior and lateral chest roentgenograms. Am Rev Respir Dis 96(3):548–552PubMed Pratt PC, Klugh GA (1967) A method for the determination of total lung capacity from posteroanterior and lateral chest roentgenograms. Am Rev Respir Dis 96(3):548–552PubMed
42.
go back to reference Tanaka R, Sanada S, Tsujioka K, Matsui T, Takata T, Matsui O (2008) Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom. Radiol Phys Technol 1(1):27–32PubMedCrossRef Tanaka R, Sanada S, Tsujioka K, Matsui T, Takata T, Matsui O (2008) Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom. Radiol Phys Technol 1(1):27–32PubMedCrossRef
43.
go back to reference Miyatake H, Asada K, Tabata T, Eguchi Y, Matsutani N, Nakagawa Y (2021) Novel pulmonary circulation imaging using dynamic chest radiography for acute pulmonary embolism. Circ J 85(4):400PubMedCrossRef Miyatake H, Asada K, Tabata T, Eguchi Y, Matsutani N, Nakagawa Y (2021) Novel pulmonary circulation imaging using dynamic chest radiography for acute pulmonary embolism. Circ J 85(4):400PubMedCrossRef
45.
go back to reference Yamasaki Y, Moriyama S, Tatsumoto R, Abe K, Ishigami K (2022) Chronic thromboembolic pulmonary hypertension after acute pulmonary thromboembolism revealed by dynamic chest radiography. Eur Heart J Cardiovasc Imaging 23(6):e264–e265PubMedPubMedCentralCrossRef Yamasaki Y, Moriyama S, Tatsumoto R, Abe K, Ishigami K (2022) Chronic thromboembolic pulmonary hypertension after acute pulmonary thromboembolism revealed by dynamic chest radiography. Eur Heart J Cardiovasc Imaging 23(6):e264–e265PubMedPubMedCentralCrossRef
46.
go back to reference Yamasaki Y, Ishigami K (2021) Dynamic chest radiography of pulmonary arteriovenous malformation. Radiology 300(2):285PubMedCrossRef Yamasaki Y, Ishigami K (2021) Dynamic chest radiography of pulmonary arteriovenous malformation. Radiology 300(2):285PubMedCrossRef
47.
go back to reference Leong P, Bardin PG, Lau KK (2013) What’s in a name? Expiratory tracheal narrowing in adults explained. Clin Radiol 68(12):1268–1275PubMedCrossRef Leong P, Bardin PG, Lau KK (2013) What’s in a name? Expiratory tracheal narrowing in adults explained. Clin Radiol 68(12):1268–1275PubMedCrossRef
48.
go back to reference Mitropoulos A, Song W-J, Almaghlouth F, Kemp S, Polkey M, Hull JH (2021) Detection and diagnosis of large airway collapse: a systematic review. ERJ Open Res 7(3):00055–02021PubMedPubMedCentralCrossRef Mitropoulos A, Song W-J, Almaghlouth F, Kemp S, Polkey M, Hull JH (2021) Detection and diagnosis of large airway collapse: a systematic review. ERJ Open Res 7(3):00055–02021PubMedPubMedCentralCrossRef
49.
go back to reference Rajendran K, Petersilka M, Henning A et al (2021) First clinical photon-counting detector CT system: technical evaluation. Radiology 303(1):130–138PubMedCrossRef Rajendran K, Petersilka M, Henning A et al (2021) First clinical photon-counting detector CT system: technical evaluation. Radiology 303(1):130–138PubMedCrossRef
50.
go back to reference Kim Y, Kim YK, Lee BE et al (2015) Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction. AJR Am J Roentgenol 204(6):1197–1202PubMedCrossRef Kim Y, Kim YK, Lee BE et al (2015) Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction. AJR Am J Roentgenol 204(6):1197–1202PubMedCrossRef
Metadata
Title
Dynamic chest radiography: a state-of-the-art review
Authors
Fred Fyles
Thomas S. FitzMaurice
Ryan E. Robinson
Ram Bedi
Hassan Burhan
Martin J. Walshaw
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01451-4

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue