Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Review

Current state of the art of regional hyperthermia treatment planning: a review

Authors: HP Kok, P. Wust, PR Stauffer, F Bardati, GC van Rhoon, J. Crezee

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Locoregional hyperthermia, i.e. increasing the tumor temperature to 40–45 °C using an external heating device, is a very effective radio and chemosensitizer, which significantly improves clinical outcome. There is a clear thermal dose-effect relation, but the pursued optimal thermal dose of 43 °C for 1 h can often not be realized due to treatment limiting hot spots in normal tissue. Modern heating devices have a large number of independent antennas, which provides flexible power steering to optimize tumor heating and minimize hot spots, but manual selection of optimal settings is difficult. Treatment planning is a very valuable tool to improve locoregional heating. This paper reviews the developments in treatment planning software for tissue segmentation, electromagnetic field calculations, thermal modeling and optimization techniques. Over the last decade, simulation tools have become more advanced. On-line use has become possible by implementing algorithms on the graphical processing unit, which allows real-time computations. The number of applications using treatment planning is increasing rapidly and moving on from retrospective analyses towards assisting prospective clinical treatment strategies. Some clinically relevant applications will be discussed.
Literature
1.
go back to reference Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, et al. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia 2015:1–6. doi: 10.3109/02656736.2015.1040471 Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, et al. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia 2015:1–6. doi: 10.​3109/​02656736.​2015.​1040471
2.
go back to reference Van der Zee J, González González D, Van Rhoon GC, van Dijk JDP, van Putten WLJ, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 2000;355:1119–25.PubMedCrossRef Van der Zee J, González González D, Van Rhoon GC, van Dijk JDP, van Putten WLJ, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 2000;355:1119–25.PubMedCrossRef
3.
go back to reference Overgaard J, González González D, Hulshof MCCM, Arcangeli G, Dahl O, Mella O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet. 1995;345:540–3.PubMedCrossRef Overgaard J, González González D, Hulshof MCCM, Arcangeli G, Dahl O, Mella O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet. 1995;345:540–3.PubMedCrossRef
4.
go back to reference Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, Van der Zee J, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 1996;35:731–44.PubMedCrossRef Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, Van der Zee J, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 1996;35:731–44.PubMedCrossRef
5.
go back to reference Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–70.PubMedCentralPubMedCrossRef Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–70.PubMedCentralPubMedCrossRef
6.
go back to reference Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 2011;107:912–8.PubMedCrossRef Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 2011;107:912–8.PubMedCrossRef
7.
go back to reference Turner PF, Tumeh A, Schaefermeyer T. BSD-2000 approach for deep local and regional hyperthermia: physics and technology. StrahlentherOnkol. 1989;165:738–41. Turner PF, Tumeh A, Schaefermeyer T. BSD-2000 approach for deep local and regional hyperthermia: physics and technology. StrahlentherOnkol. 1989;165:738–41.
8.
go back to reference Crezee J, Van Haaren PMA, Westendorp H, De Greef M, Kok HP, Wiersma J, et al. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: A preclinical study. Int J Hyperthermia. 2009;25:581–92.PubMedCrossRef Crezee J, Van Haaren PMA, Westendorp H, De Greef M, Kok HP, Wiersma J, et al. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: A preclinical study. Int J Hyperthermia. 2009;25:581–92.PubMedCrossRef
9.
go back to reference Paulides MM, Bakker JF, Neufeld E, van der Zee J, Jansen PP, Levendag PC, et al. Winner of the "New Investigator Award" at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: a novel applicator for hyperthermia in the head and neck. Int J Hyperthermia. 2007;23:567–76. Paulides MM, Bakker JF, Neufeld E, van der Zee J, Jansen PP, Levendag PC, et al. Winner of the "New Investigator Award" at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: a novel applicator for hyperthermia in the head and neck. Int J Hyperthermia. 2007;23:567–76.
10.
go back to reference Franckena M, Fatehi D, de Bruijne M, Canters RA, van Norden Y, Mens JW, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009;45:1969–78.PubMedCrossRef Franckena M, Fatehi D, de Bruijne M, Canters RA, van Norden Y, Mens JW, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009;45:1969–78.PubMedCrossRef
11.
go back to reference Thrall DE, Larue SM, Yu D, Samulski T, Sanders L, Case B, et al. Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res. 2005;11:5206–14.PubMedCentralPubMedCrossRef Thrall DE, Larue SM, Yu D, Samulski T, Sanders L, Case B, et al. Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res. 2005;11:5206–14.PubMedCentralPubMedCrossRef
12.
go back to reference Wust P, Rau B, Gellerman J, Pegios W, Loffel J, Riess H, et al. Radiochemotherapy and hyperthermia in the treatment of rectal cancer. Recent Results Cancer Res. 1998;146:175–91.PubMedCrossRef Wust P, Rau B, Gellerman J, Pegios W, Loffel J, Riess H, et al. Radiochemotherapy and hyperthermia in the treatment of rectal cancer. Recent Results Cancer Res. 1998;146:175–91.PubMedCrossRef
13.
go back to reference Van Rhoon GC, Why high quality hyperthermia is important, lessons to be learned (multi-institutional article). Radiat Oncol 2015. Van Rhoon GC, Why high quality hyperthermia is important, lessons to be learned (multi-institutional article). Radiat Oncol 2015.
14.
go back to reference Gellermann J, Faehling H, Mielec M, Cho CH, Budach V, Wust P. Image artifacts during MRT hybrid hyperthermia--causes and elimination. Int J Hyperthermia. 2008;24:327–35.PubMedCrossRef Gellermann J, Faehling H, Mielec M, Cho CH, Budach V, Wust P. Image artifacts during MRT hybrid hyperthermia--causes and elimination. Int J Hyperthermia. 2008;24:327–35.PubMedCrossRef
15.
go back to reference Weihrauch M, Wust P, Weiser M, Nadobny J, Eisenhardt S, Budach V, et al. Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system. MedPhys. 2007;34:4717–25. Weihrauch M, Wust P, Weiser M, Nadobny J, Eisenhardt S, Budach V, et al. Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system. MedPhys. 2007;34:4717–25.
16.
go back to reference Stakhursky VL, Arabe O, Cheng KS, Macfall J, Maccarini P, Craciunescu O, et al. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm. Phys Med Biol. 2009;54:2131–45.PubMedCentralPubMedCrossRef Stakhursky VL, Arabe O, Cheng KS, Macfall J, Maccarini P, Craciunescu O, et al. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm. Phys Med Biol. 2009;54:2131–45.PubMedCentralPubMedCrossRef
17.
go back to reference Gellermann J, Wlodarczyk W, Hildebrandt B, Ganter H, Nicolau A, Rau B, et al. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res. 2005;65:5872–80.PubMedCrossRef Gellermann J, Wlodarczyk W, Hildebrandt B, Ganter H, Nicolau A, Rau B, et al. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res. 2005;65:5872–80.PubMedCrossRef
18.
go back to reference Gellermann J, Hildebrandt B, Issels R, Ganter H, Wlodarczyk W, Budach V, et al. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer. 2006;107:1373–82.PubMedCrossRef Gellermann J, Hildebrandt B, Issels R, Ganter H, Wlodarczyk W, Budach V, et al. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer. 2006;107:1373–82.PubMedCrossRef
19.
go back to reference Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: an overview. Int J Hyperthermia. 2014;30:219–27.PubMedCrossRef Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: an overview. Int J Hyperthermia. 2014;30:219–27.PubMedCrossRef
20.
go back to reference Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RA, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia. 2013;29:346–57.PubMedCentralPubMedCrossRef Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RA, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia. 2013;29:346–57.PubMedCentralPubMedCrossRef
21.
go back to reference Gellermann J, Wust P, Stalling D, Seebass M, Nadobny J, Beck R, et al. Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan. Int J Radiat Oncol Biol Phys. 2000;47:1145–56.PubMedCrossRef Gellermann J, Wust P, Stalling D, Seebass M, Nadobny J, Beck R, et al. Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan. Int J Radiat Oncol Biol Phys. 2000;47:1145–56.PubMedCrossRef
22.
go back to reference Sreenivasa G, Gellermann J, Rau B, Nadobny J, Schlag P, Deuflhard P, et al. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys. 2003;55:407–19.PubMedCrossRef Sreenivasa G, Gellermann J, Rau B, Nadobny J, Schlag P, Deuflhard P, et al. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys. 2003;55:407–19.PubMedCrossRef
23.
go back to reference van Haaren PM, Kok HP, van den Berg CA, Zum Vörde Sive Vörding PJ, Oldenborg S, Stalpers LJ, et al. On verification of hyperthermia treatment planning for cervical carcinoma patients. Int J Hyperthermia. 2007;23:303–14.PubMedCrossRef van Haaren PM, Kok HP, van den Berg CA, Zum Vörde Sive Vörding PJ, Oldenborg S, Stalpers LJ, et al. On verification of hyperthermia treatment planning for cervical carcinoma patients. Int J Hyperthermia. 2007;23:303–14.PubMedCrossRef
24.
go back to reference Rijnen Z, Bakker JF, Canters RA, Togni P, Verduijn GM, Levendag PC, et al. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperthermia. 2013;29:181–93.PubMedCrossRef Rijnen Z, Bakker JF, Canters RA, Togni P, Verduijn GM, Levendag PC, et al. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperthermia. 2013;29:181–93.PubMedCrossRef
25.
go back to reference Franckena M, Canters R, Termorshuizen F, Van der Zee J, Van Rhoon GC. Clinical implementation of hyperthermia treatment planning guided steering: A cross over trial to assess its current contribution to treatment quality. Int J Hyperthermia. 2010;26:145–57.PubMedCrossRef Franckena M, Canters R, Termorshuizen F, Van der Zee J, Van Rhoon GC. Clinical implementation of hyperthermia treatment planning guided steering: A cross over trial to assess its current contribution to treatment quality. Int J Hyperthermia. 2010;26:145–57.PubMedCrossRef
26.
go back to reference Kok HP, Ciampa S, De Kroon-Oldenhof R, Steggerda-Carvalho EJ, Van Stam G, Zum Vörde Sive Vörding PJ, et al. Toward on-line adaptive hyperthermia treatment planning: correlation between measured and simulated specific absorption rate changes caused by phase steering in patients. Int J Radiat Oncol Biol Phys. 2014;90:438–45.PubMedCrossRef Kok HP, Ciampa S, De Kroon-Oldenhof R, Steggerda-Carvalho EJ, Van Stam G, Zum Vörde Sive Vörding PJ, et al. Toward on-line adaptive hyperthermia treatment planning: correlation between measured and simulated specific absorption rate changes caused by phase steering in patients. Int J Radiat Oncol Biol Phys. 2014;90:438–45.PubMedCrossRef
27.
go back to reference Juang T, Stauffer PR, Craciunescu OA, Maccarini PF, Yuan Y, Das SK, et al. Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer. Int J Hyperthermia. 2014;30:176–83.PubMedCentralPubMedCrossRef Juang T, Stauffer PR, Craciunescu OA, Maccarini PF, Yuan Y, Das SK, et al. Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer. Int J Hyperthermia. 2014;30:176–83.PubMedCentralPubMedCrossRef
28.
go back to reference Kroeze H, Kokubo M, van de Kamer JB, De Leeuw AAC, Kikuchi M, Hiraoka M, et al. Comparison of a Capacitive and a Cavity Slot Radiative applicator for Regional Hyperthermia. Jpn J Hyperthermic Oncol. 2002;18:75–91. Kroeze H, Kokubo M, van de Kamer JB, De Leeuw AAC, Kikuchi M, Hiraoka M, et al. Comparison of a Capacitive and a Cavity Slot Radiative applicator for Regional Hyperthermia. Jpn J Hyperthermic Oncol. 2002;18:75–91.
29.
go back to reference Paulsen KD, Geimer S, Tang J, Boyse WE. Optimization of pelvic heating rate distributions with electromagnetic phased arrays. Int J Hyperthermia. 1999;15:157–86.PubMedCrossRef Paulsen KD, Geimer S, Tang J, Boyse WE. Optimization of pelvic heating rate distributions with electromagnetic phased arrays. Int J Hyperthermia. 1999;15:157–86.PubMedCrossRef
30.
go back to reference Seebass M, Beck R, Gellermann J, Nadobny J, Wust P. Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement. Int J Hyperthermia. 2001;17:321–36.PubMedCrossRef Seebass M, Beck R, Gellermann J, Nadobny J, Wust P. Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement. Int J Hyperthermia. 2001;17:321–36.PubMedCrossRef
31.
go back to reference Kok HP, De Greef M, Borsboom PP, Bel A, Crezee J. Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency. Int J Hyperthermia. 2011;27:224–39.PubMedCrossRef Kok HP, De Greef M, Borsboom PP, Bel A, Crezee J. Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency. Int J Hyperthermia. 2011;27:224–39.PubMedCrossRef
32.
go back to reference Kroeze H, van de Kamer JB, De Leeuw AAC, Lagendijk JJW. Regional hyperthermia applicator design using FDTD modelling. Phys Med Biol. 2001;46:1919–35.PubMedCrossRef Kroeze H, van de Kamer JB, De Leeuw AAC, Lagendijk JJW. Regional hyperthermia applicator design using FDTD modelling. Phys Med Biol. 2001;46:1919–35.PubMedCrossRef
33.
go back to reference De Greef M, Kok HP, Correia D, Borsboom PP, Bel A, Crezee J. Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys Med Biol. 2011;56:3233–50.PubMedCrossRef De Greef M, Kok HP, Correia D, Borsboom PP, Bel A, Crezee J. Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys Med Biol. 2011;56:3233–50.PubMedCrossRef
34.
go back to reference Togni P, Rijnen Z, Numan WC, Verhaart RF, Bakker JF, van Rhoon GC, et al. Electromagnetic redesign of the HYPERcollar applicator: toward improved deep local head-and-neck hyperthermia. Phys Med Biol. 2013;58:5997–6009.PubMedCrossRef Togni P, Rijnen Z, Numan WC, Verhaart RF, Bakker JF, van Rhoon GC, et al. Electromagnetic redesign of the HYPERcollar applicator: toward improved deep local head-and-neck hyperthermia. Phys Med Biol. 2013;58:5997–6009.PubMedCrossRef
35.
go back to reference Trujillo-Romero CJ, Paulides MM, Drizdal T, van Rhoon GC. Impact of silicone and metal port-a-cath implants on superficial hyperthermia treatment quality. Int J Hyperthermia. 2015;31:15–22.PubMedCrossRef Trujillo-Romero CJ, Paulides MM, Drizdal T, van Rhoon GC. Impact of silicone and metal port-a-cath implants on superficial hyperthermia treatment quality. Int J Hyperthermia. 2015;31:15–22.PubMedCrossRef
36.
go back to reference Cheng KS, Stakhursky V, Stauffer P, Dewhirst M, Das SK. Online feedback focusing algorithm for hyperthermia cancer treatment. Int J Hyperthermia. 2007;23:539–54.PubMedCentralPubMedCrossRef Cheng KS, Stakhursky V, Stauffer P, Dewhirst M, Das SK. Online feedback focusing algorithm for hyperthermia cancer treatment. Int J Hyperthermia. 2007;23:539–54.PubMedCentralPubMedCrossRef
37.
go back to reference Bruggmoser G, Bauchowitz S, Canters R, Crezee H, Ehmann M, Gellermann J, et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia: quality management in regional deep hyperthermia. Strahlentherapie und Onkologie. 2012;188 Suppl 2:198–211.PubMedCrossRef Bruggmoser G, Bauchowitz S, Canters R, Crezee H, Ehmann M, Gellermann J, et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia: quality management in regional deep hyperthermia. Strahlentherapie und Onkologie. 2012;188 Suppl 2:198–211.PubMedCrossRef
38.
go back to reference Myerson RJ, Moros EG, Diederich CJ, Haemmerich D, Hurwitz MD, Hsu IC, et al. Components of a hyperthermia clinic: recommendations for staffing, equipment, and treatment monitoring. Int J Hyperthermia. 2014;30:1–5. Myerson RJ, Moros EG, Diederich CJ, Haemmerich D, Hurwitz MD, Hsu IC, et al. Components of a hyperthermia clinic: recommendations for staffing, equipment, and treatment monitoring. Int J Hyperthermia. 2014;30:1–5.
39.
go back to reference Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I Literature survey. Phys Med Biol. 1996;41:2231–49.PubMedCrossRef Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I Literature survey. Phys Med Biol. 1996;41:2231–49.PubMedCrossRef
40.
go back to reference Hornsleth SN, Mella O, Dahl O. A new segmentation algorithm for finite difference based treatment planning systems. In Hyperthermic Oncology 1996 vol 2. Edited by Franconi C, Arcangeli G, Cavaliere R. Rome, Italy Tor Vergata; 1996: p. 521–523 Hornsleth SN, Mella O, Dahl O. A new segmentation algorithm for finite difference based treatment planning systems. In Hyperthermic Oncology 1996 vol 2. Edited by Franconi C, Arcangeli G, Cavaliere R. Rome, Italy Tor Vergata; 1996: p. 521–523
41.
go back to reference Wust P, Nadobny J, Seebass M, Stalling D, Gellermann J, Hege HC, et al. Influence of patient models and numerical methods on predicted power deposition patterns. Int J Hyperthermia. 1999;15:519–40.PubMedCrossRef Wust P, Nadobny J, Seebass M, Stalling D, Gellermann J, Hege HC, et al. Influence of patient models and numerical methods on predicted power deposition patterns. Int J Hyperthermia. 1999;15:519–40.PubMedCrossRef
42.
go back to reference Fortunati V, Verhaart RF, van der Lijn F, Niessen WJ, Veenland JF, Paulides MM, et al. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling. Med Phys. 2013;40:071905.PubMedCrossRef Fortunati V, Verhaart RF, van der Lijn F, Niessen WJ, Veenland JF, Paulides MM, et al. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling. Med Phys. 2013;40:071905.PubMedCrossRef
43.
go back to reference Verhaart RF, Fortunati V, Verduijn GM, van der Lugt A, van Walsum T, Veenland JF, et al. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature. Medical Phys. 2014;41:123302.CrossRef Verhaart RF, Fortunati V, Verduijn GM, van der Lugt A, van Walsum T, Veenland JF, et al. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature. Medical Phys. 2014;41:123302.CrossRef
44.
go back to reference van de Kamer JB, Van Wieringen N, De Leeuw AAC, Lagendijk JJW. The significance of accurate dielectric tissue data for hyperthermia treatment planning. Int J Hyperthermia. 2001;17:123–42.PubMedCrossRef van de Kamer JB, Van Wieringen N, De Leeuw AAC, Lagendijk JJW. The significance of accurate dielectric tissue data for hyperthermia treatment planning. Int J Hyperthermia. 2001;17:123–42.PubMedCrossRef
45.
go back to reference Farace P, Pontalti R, Cristoforetti L, Antolini R, Scarpa M. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning. Phys Med Biol. 1997;42:2159–74.PubMedCrossRef Farace P, Pontalti R, Cristoforetti L, Antolini R, Scarpa M. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning. Phys Med Biol. 1997;42:2159–74.PubMedCrossRef
46.
go back to reference Mazzurana M, Sandrini L, Vaccari A, Malacarne C, Cristoforetti L, Pontalti R. A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI. Phys Med Biol. 2003;48:3157–70.PubMedCrossRef Mazzurana M, Sandrini L, Vaccari A, Malacarne C, Cristoforetti L, Pontalti R. A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI. Phys Med Biol. 2003;48:3157–70.PubMedCrossRef
47.
go back to reference Balidemaj E, Van Lier ALHMW, Crezee H, Nederveen AJ, Stalpers LJA, Van den Berg CAT. Feasibility of Electric Property Tomography of pelvic tumors at 3 T. Magn Reson Med. 2015;73:1505–13.PubMedCrossRef Balidemaj E, Van Lier ALHMW, Crezee H, Nederveen AJ, Stalpers LJA, Van den Berg CAT. Feasibility of Electric Property Tomography of pelvic tumors at 3 T. Magn Reson Med. 2015;73:1505–13.PubMedCrossRef
48.
go back to reference Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging. 2009;28:1365–74.PubMedCrossRef Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging. 2009;28:1365–74.PubMedCrossRef
49.
go back to reference Balidemaj E, Trinks J, Van den Berg CAT, Nederveen AJ, van Lier AL, Stalpers LJA, Crezee J, Remis RF. CSI-EPT: A novel contrast source approach to MRI based electric properties tomography and patient-specific SAR. doi: 10.1109/ICEAA.2013.6632328. International Conference on Electromagnetics in Advanced Applications (ICEAA), 2013 2013:668–671. Balidemaj E, Trinks J, Van den Berg CAT, Nederveen AJ, van Lier AL, Stalpers LJA, Crezee J, Remis RF. CSI-EPT: A novel contrast source approach to MRI based electric properties tomography and patient-specific SAR. doi: 10.​1109/​ICEAA.​2013.​6632328. International Conference on Electromagnetics in Advanced Applications (ICEAA), 2013 2013:668–671.
50.
go back to reference Van den Berg PM, Abubakar A. Contrast source inversion method: state of art. Prog Electromagn Res. 2001;34:189–218.CrossRef Van den Berg PM, Abubakar A. Contrast source inversion method: state of art. Prog Electromagn Res. 2001;34:189–218.CrossRef
51.
go back to reference Canters RA, Franckena M, Paulides MM, Van Rhoon GC. Patient positioning in deep hyperthermia: influences of inaccuracies, signal correction possibilities and optimization potential. Phys Med Biol. 2009;54:3923–36.PubMedCrossRef Canters RA, Franckena M, Paulides MM, Van Rhoon GC. Patient positioning in deep hyperthermia: influences of inaccuracies, signal correction possibilities and optimization potential. Phys Med Biol. 2009;54:3923–36.PubMedCrossRef
52.
go back to reference De Greef M, Kok HP, Bel A, Crezee J. 3-D versus 2-D steering in patient anatomies: a comparison using hyperthermia treatment planning. Int J Hyperthermia. 2011;27:74–85.PubMedCrossRef De Greef M, Kok HP, Bel A, Crezee J. 3-D versus 2-D steering in patient anatomies: a comparison using hyperthermia treatment planning. Int J Hyperthermia. 2011;27:74–85.PubMedCrossRef
53.
go back to reference Winter L, Ozerdem C, Hoffmann W, Santoro D, Muller A, Waiczies H, et al. Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla. PloS One. 2013;8(4):e61661.PubMedCentralPubMedCrossRef Winter L, Ozerdem C, Hoffmann W, Santoro D, Muller A, Waiczies H, et al. Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla. PloS One. 2013;8(4):e61661.PubMedCentralPubMedCrossRef
54.
go back to reference Dobsicek Trefna H, Vrba J, Persson M. Evaluation of a patch antenna applicator for time reversal hyperthemia. Int J hyperthermia. 2010;26:185–97.PubMedCrossRef Dobsicek Trefna H, Vrba J, Persson M. Evaluation of a patch antenna applicator for time reversal hyperthemia. Int J hyperthermia. 2010;26:185–97.PubMedCrossRef
55.
go back to reference Paulides MM, Vossen SH, Zwamborn AP, van Rhoon GC. Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region. Int J Radiat Oncol Biol Phys. 2005;63:634–42.PubMedCrossRef Paulides MM, Vossen SH, Zwamborn AP, van Rhoon GC. Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region. Int J Radiat Oncol Biol Phys. 2005;63:634–42.PubMedCrossRef
56.
go back to reference Hand JW. Modelling the interaction of electromagnetic fields (10 MHz-10 GHz) with the human body: methods and applications. Phys Med Biol. 2008;53:R243–286.PubMedCrossRef Hand JW. Modelling the interaction of electromagnetic fields (10 MHz-10 GHz) with the human body: methods and applications. Phys Med Biol. 2008;53:R243–286.PubMedCrossRef
57.
go back to reference Deuflhard P, Schiela A, Weiser M. Mathematical cancer therapy planning in deep regional hyperthermia. Acta Numerica. 2012;21:307–78.CrossRef Deuflhard P, Schiela A, Weiser M. Mathematical cancer therapy planning in deep regional hyperthermia. Acta Numerica. 2012;21:307–78.CrossRef
58.
go back to reference Mur G: Absorbing boundary condition for the finite difference approximation of the time-domain electromagnetic-field equations. IEEE TransElectromagnCompat 1981;23:377–382. Mur G: Absorbing boundary condition for the finite difference approximation of the time-domain electromagnetic-field equations. IEEE TransElectromagnCompat 1981;23:377–382.
59.
go back to reference Berenger JP. A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves. J Comput Phys. 1994;114:185–200.CrossRef Berenger JP. A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves. J Comput Phys. 1994;114:185–200.CrossRef
60.
go back to reference Berntsen S, Hornsleth SN. Retarded Time Absorbing Boundary-Conditions. IEEE Trans Antennas and Propagation. 1994;42:1059–64.CrossRef Berntsen S, Hornsleth SN. Retarded Time Absorbing Boundary-Conditions. IEEE Trans Antennas and Propagation. 1994;42:1059–64.CrossRef
61.
go back to reference Bayliss A, Turkel E. Radiation boundary conditions for wavelike equations. Commun Pure Appl Math. 1980;33:707–25.CrossRef Bayliss A, Turkel E. Radiation boundary conditions for wavelike equations. Commun Pure Appl Math. 1980;33:707–25.CrossRef
62.
go back to reference Taflove A. Computational Electrodynamics, The Finite-Difference Time-Domain Method. (Boston, USA: Artech House). 1995. Taflove A. Computational Electrodynamics, The Finite-Difference Time-Domain Method. (Boston, USA: Artech House). 1995.
63.
go back to reference Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag. 1966;14:302–7.CrossRef Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag. 1966;14:302–7.CrossRef
64.
go back to reference Nadobny J, Sullivan D, Wust P, Seebass M, Deuflhard P, Felix R. A high-resolution interpolation at arbitrary interfaces for the FDTD method. IEEE Trans Microw Theory Tech. 1998;46:1759–66.CrossRef Nadobny J, Sullivan D, Wust P, Seebass M, Deuflhard P, Felix R. A high-resolution interpolation at arbitrary interfaces for the FDTD method. IEEE Trans Microw Theory Tech. 1998;46:1759–66.CrossRef
65.
go back to reference Das SK, Clegg ST, Anscher MS, Samulski TV. Simulation of electromagnetically induced hyperthermia: a finite element gridding method. Int J Hyperthermia. 1995;11:797–808.PubMedCrossRef Das SK, Clegg ST, Anscher MS, Samulski TV. Simulation of electromagnetically induced hyperthermia: a finite element gridding method. Int J Hyperthermia. 1995;11:797–808.PubMedCrossRef
66.
go back to reference Paulsen KD, Jia XL, Sullivan JM. Finite-Element Computations of Specific Absorption Rates in Anatomically Conforming Full-Body Models for Hyperthermia Treatment Analysis. IEEE Trans Biomed Eng. 1993;40:933–45.PubMedCrossRef Paulsen KD, Jia XL, Sullivan JM. Finite-Element Computations of Specific Absorption Rates in Anatomically Conforming Full-Body Models for Hyperthermia Treatment Analysis. IEEE Trans Biomed Eng. 1993;40:933–45.PubMedCrossRef
67.
go back to reference Löhner R, Parikh P. Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids. 1988;8:1135–49.CrossRef Löhner R, Parikh P. Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids. 1988;8:1135–49.CrossRef
68.
go back to reference Mohamed A, Davatzikos C. Finite element mesh generation and remeshing from segmented medical images. Proc IEEE Int Symp on Biomed Imaging. 2004;1:420–3. Mohamed A, Davatzikos C. Finite element mesh generation and remeshing from segmented medical images. Proc IEEE Int Symp on Biomed Imaging. 2004;1:420–3.
69.
go back to reference Weiland T. Discretization Method for Solution of Maxwells Equations for 6-Component Fields. Aeu-Int J Electron C. 1977;31:116–20. Weiland T. Discretization Method for Solution of Maxwells Equations for 6-Component Fields. Aeu-Int J Electron C. 1977;31:116–20.
70.
go back to reference Wust P, Nadobny J, Seebass M, Dohlus JM, John W, Felix R. 3-D Computation of E-Fields by the Volume-Surface Integral-Equation (Vsie) Method in Comparison with the Finite-Integration Theory (Fit) Method. IEEE Trans Biomed Eng. 1993;40:745–59.PubMedCrossRef Wust P, Nadobny J, Seebass M, Dohlus JM, John W, Felix R. 3-D Computation of E-Fields by the Volume-Surface Integral-Equation (Vsie) Method in Comparison with the Finite-Integration Theory (Fit) Method. IEEE Trans Biomed Eng. 1993;40:745–59.PubMedCrossRef
71.
go back to reference Zwamborn P, Vandenberg PM. The 3-Dimensional Weak Form of the Conjugate-Gradient Fft Method for Solving Scattering Problems. IEEE Trans Microw Theory Tech. 1992;40:1757–66.CrossRef Zwamborn P, Vandenberg PM. The 3-Dimensional Weak Form of the Conjugate-Gradient Fft Method for Solving Scattering Problems. IEEE Trans Microw Theory Tech. 1992;40:1757–66.CrossRef
72.
go back to reference Zwamborn APM, Van den Berg PM, Mooibroek J, Koenis FTC. Computation of three-dimensional electromagnetic-field distributions in a human body using the weak form of the CGFFT method. Appl Comput Electromagn Soc. 1992;7:26–42. Zwamborn APM, Van den Berg PM, Mooibroek J, Koenis FTC. Computation of three-dimensional electromagnetic-field distributions in a human body using the weak form of the CGFFT method. Appl Comput Electromagn Soc. 1992;7:26–42.
73.
go back to reference Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984;44:4721s–30s.PubMed Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984;44:4721s–30s.PubMed
74.
go back to reference Wust P, Stahl H, Loffel J, Seebass M, Riess H, Felix R. Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia. 1995;11:151–67.PubMedCrossRef Wust P, Stahl H, Loffel J, Seebass M, Riess H, Felix R. Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia. 1995;11:151–67.PubMedCrossRef
75.
go back to reference Tilly W, Wust P, Rau B, Harder C, Gellermann J, Schlag P, et al. Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations. Int J Hyperthermia. 2001;17:172–88.PubMedCrossRef Tilly W, Wust P, Rau B, Harder C, Gellermann J, Schlag P, et al. Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations. Int J Hyperthermia. 2001;17:172–88.PubMedCrossRef
76.
go back to reference De Greef M, Kok HP, Correia D, Bel A, Crezee J. Optimization in hyperthermia treatment planning: the impact of tissue perfusion uncertainty. Med Phys. 2010;37:4540–50.PubMedCrossRef De Greef M, Kok HP, Correia D, Bel A, Crezee J. Optimization in hyperthermia treatment planning: the impact of tissue perfusion uncertainty. Med Phys. 2010;37:4540–50.PubMedCrossRef
77.
go back to reference Bhowmik A, Singh R, Repaka R, Mishra SC. Conventional and newly developed bioheat transport models in vascularized tissues: A review. J Therm Biol. 2013;38:107–25.CrossRef Bhowmik A, Singh R, Repaka R, Mishra SC. Conventional and newly developed bioheat transport models in vascularized tissues: A review. J Therm Biol. 2013;38:107–25.CrossRef
78.
go back to reference Kok HP, Gellermann J, Van den Berg CA, Stauffer PR, Hand JW, Crezee J. Thermal modelling using discrete vasculature for thermal therapy: a review. Int J Hyperthermia. 2013;29:336–45.PubMedCentralPubMedCrossRef Kok HP, Gellermann J, Van den Berg CA, Stauffer PR, Hand JW, Crezee J. Thermal modelling using discrete vasculature for thermal therapy: a review. Int J Hyperthermia. 2013;29:336–45.PubMedCentralPubMedCrossRef
79.
go back to reference Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. J Appl Physiol. 1948;1:93–122.PubMed Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. J Appl Physiol. 1948;1:93–122.PubMed
80.
go back to reference Wulff W. The energy conservation equation for living tissue. IEEE Trans Biomed Eng. 1974;21:494–5.CrossRef Wulff W. The energy conservation equation for living tissue. IEEE Trans Biomed Eng. 1974;21:494–5.CrossRef
81.
go back to reference Chen MM, Holmes KR. Microvascular contributions in tissue heat transfer. Ann N Y Acad Sci. 1980;335:137–50.PubMedCrossRef Chen MM, Holmes KR. Microvascular contributions in tissue heat transfer. Ann N Y Acad Sci. 1980;335:137–50.PubMedCrossRef
82.
go back to reference Weinbaum S, Jiji LM. The matching of thermal fields surrounding countercurrent microvessels and the closure approximation in the Weinbaum-Jiji Equation. J Biomech Eng-Trans Asme. 1989;111:271–5.CrossRef Weinbaum S, Jiji LM. The matching of thermal fields surrounding countercurrent microvessels and the closure approximation in the Weinbaum-Jiji Equation. J Biomech Eng-Trans Asme. 1989;111:271–5.CrossRef
83.
go back to reference Crezee J, Lagendijk JJ. Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol. 1992;37:1321–37.PubMedCrossRef Crezee J, Lagendijk JJ. Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol. 1992;37:1321–37.PubMedCrossRef
84.
go back to reference Moros EG, Straube WL, Myerson RJ: Finite difference vascular model for 3-D cancer treatment with hyperthermia. In Advances in Biological and Heat and Mass Transfer Volume IITD-286. Edited by Roemer RB: ASME Heat Transfer Division; 1993: 107–111 Moros EG, Straube WL, Myerson RJ: Finite difference vascular model for 3-D cancer treatment with hyperthermia. In Advances in Biological and Heat and Mass Transfer Volume IITD-286. Edited by Roemer RB: ASME Heat Transfer Division; 1993: 107–111
85.
go back to reference Lagendijk JJ. The influence of bloodflow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol. 1982;27:17–23.PubMedCrossRef Lagendijk JJ. The influence of bloodflow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol. 1982;27:17–23.PubMedCrossRef
86.
go back to reference Rawnsley RJ, Roemer RB, Dutton AW. The simulation of discrete vessel effects in experimental hyperthermia. J Biomech Eng. 1994;116:256–62.PubMedCrossRef Rawnsley RJ, Roemer RB, Dutton AW. The simulation of discrete vessel effects in experimental hyperthermia. J Biomech Eng. 1994;116:256–62.PubMedCrossRef
88.
go back to reference Lagendijk JJ, Schellekens M, Schipper J, van der Linden PM. A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment. Phys Med Biol. 1984;29:495–507.PubMedCrossRef Lagendijk JJ, Schellekens M, Schipper J, van der Linden PM. A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment. Phys Med Biol. 1984;29:495–507.PubMedCrossRef
89.
go back to reference Mooibroek J, Lagendijk JJ. A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three-dimensional inhomogeneous tissues. IEEE Trans Biomed Eng. 1991;38:490–501.PubMedCrossRef Mooibroek J, Lagendijk JJ. A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three-dimensional inhomogeneous tissues. IEEE Trans Biomed Eng. 1991;38:490–501.PubMedCrossRef
90.
go back to reference Kotte AN, van Leeuwen GM, Lagendijk JJ. Modelling the thermal impact of a discrete vessel tree. Phys Med Biol. 1999;44:57–74.PubMedCrossRef Kotte AN, van Leeuwen GM, Lagendijk JJ. Modelling the thermal impact of a discrete vessel tree. Phys Med Biol. 1999;44:57–74.PubMedCrossRef
91.
go back to reference Kok HP, Van den Berg CAT, Bel A, Crezee J. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Med Phys. 2013;40:103303.PubMedCrossRef Kok HP, Van den Berg CAT, Bel A, Crezee J. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Med Phys. 2013;40:103303.PubMedCrossRef
92.
go back to reference Huang HW, Chen ZP, Roemer RB. A counter current vascular network model of heat transfer in tissues. J Biomech Eng. 1996;118:120–9.PubMedCrossRef Huang HW, Chen ZP, Roemer RB. A counter current vascular network model of heat transfer in tissues. J Biomech Eng. 1996;118:120–9.PubMedCrossRef
93.
go back to reference Kotte ANTJ, van Leeuwen GMJ, de Bree J, van der Koijk JF, Crezee J, Lagendijk JJW. A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol. 1996;41:865–84.PubMedCrossRef Kotte ANTJ, van Leeuwen GMJ, de Bree J, van der Koijk JF, Crezee J, Lagendijk JJW. A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol. 1996;41:865–84.PubMedCrossRef
94.
go back to reference Raaymakers BW, Crezee J, Lagendijk JJ. Modelling individual temperature profiles from an isolated perfused bovine tongue. Phys Med Biol. 2000;45:765–80.PubMedCrossRef Raaymakers BW, Crezee J, Lagendijk JJ. Modelling individual temperature profiles from an isolated perfused bovine tongue. Phys Med Biol. 2000;45:765–80.PubMedCrossRef
95.
go back to reference Craciunescu OI, Raaymakers BW, Kotte AN, Das SK, Samulski TV, Lagendijk JJ. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements. Med Phys. 2001;28:2289–96.PubMedCrossRef Craciunescu OI, Raaymakers BW, Kotte AN, Das SK, Samulski TV, Lagendijk JJ. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements. Med Phys. 2001;28:2289–96.PubMedCrossRef
96.
go back to reference Van den Berg CAT, van de Kamer JB, De Leeuw AAC, Jeukens CRLPN, Raaymakers BW, Van Vulpen M, et al. Towards patient specific thermal modelling of the prostate. Phys Med Biol. 2006;51:809–25.PubMedCrossRef Van den Berg CAT, van de Kamer JB, De Leeuw AAC, Jeukens CRLPN, Raaymakers BW, Van Vulpen M, et al. Towards patient specific thermal modelling of the prostate. Phys Med Biol. 2006;51:809–25.PubMedCrossRef
97.
go back to reference van Leeuwen GM, Kotte AN, Lagendijk JJ. A flexible algorithm for construction of 3-D vessel networks for use in thermal modeling. IEEE Trans Biomed Eng. 1998;45:596–604.PubMedCrossRef van Leeuwen GM, Kotte AN, Lagendijk JJ. A flexible algorithm for construction of 3-D vessel networks for use in thermal modeling. IEEE Trans Biomed Eng. 1998;45:596–604.PubMedCrossRef
98.
go back to reference Prishvin M, Zaridze R, Bit-Babik G, Faraone A. Improved numerical modelling of heat transfer in human tissue exposed to RF energy. Australas Phys Eng Sci Med. 2010;33:307–17.PubMedCrossRef Prishvin M, Zaridze R, Bit-Babik G, Faraone A. Improved numerical modelling of heat transfer in human tissue exposed to RF energy. Australas Phys Eng Sci Med. 2010;33:307–17.PubMedCrossRef
99.
go back to reference Bardati F, Borrani A, Gerardino A, Lovisolo GA. SAR optimization in a phased array radiofrequency hyperthermia system,Specific absorption rate. IEEE Trans Biomed Eng. 1995;42:1201–7.PubMedCrossRef Bardati F, Borrani A, Gerardino A, Lovisolo GA. SAR optimization in a phased array radiofrequency hyperthermia system,Specific absorption rate. IEEE Trans Biomed Eng. 1995;42:1201–7.PubMedCrossRef
100.
go back to reference Kohler T, Maass P, Wust P, Seebass M. A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Phys Med Biol. 2001;46:2503–14.PubMedCrossRef Kohler T, Maass P, Wust P, Seebass M. A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Phys Med Biol. 2001;46:2503–14.PubMedCrossRef
101.
go back to reference Eberhart RC, Kennedy J. A new optimizer using particles swarm theory. Proc Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan) 1995:39–43. doi: 10.1109/MHS.1995.494215 Eberhart RC, Kennedy J. A new optimizer using particles swarm theory. Proc Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan) 1995:39–43. doi: 10.​1109/​MHS.​1995.​494215
102.
go back to reference Siauve N, Nicolas L, Vollaire C, Marchal C. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method. Int J Hyperthermia. 2004;20:815–33.PubMedCrossRef Siauve N, Nicolas L, Vollaire C, Marchal C. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method. Int J Hyperthermia. 2004;20:815–33.PubMedCrossRef
103.
go back to reference Liu Y, Qin Z, Shi Z. Hybrid Particle Swarm Optimizer with Line Search. IEEE International Conference on Systems, Man and Cybernetics 2004;4:3751–3755. Liu Y, Qin Z, Shi Z. Hybrid Particle Swarm Optimizer with Line Search. IEEE International Conference on Systems, Man and Cybernetics 2004;4:3751–3755.
104.
go back to reference Canters RA, Wust P, Bakker JF, Van Rhoon GC. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia. 2009;25:593–608.PubMedCrossRef Canters RA, Wust P, Bakker JF, Van Rhoon GC. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia. 2009;25:593–608.PubMedCrossRef
105.
go back to reference Paulides MM, Bakker JF, Linthorst M, der ZJ V, Rijnen Z, Neufeld E, et al. The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement. Phys Med Biol. 2010;55:2465–80.PubMedCrossRef Paulides MM, Bakker JF, Linthorst M, der ZJ V, Rijnen Z, Neufeld E, et al. The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement. Phys Med Biol. 2010;55:2465–80.PubMedCrossRef
106.
go back to reference Wust P, Seebass M, Nadobny J, Deuflhard P, Monich G, Felix R. Simulation studies promote technological development of radiofrequency phased array hyperthermia. Int J Hyperthermia. 1996;12:477–94.PubMedCrossRef Wust P, Seebass M, Nadobny J, Deuflhard P, Monich G, Felix R. Simulation studies promote technological development of radiofrequency phased array hyperthermia. Int J Hyperthermia. 1996;12:477–94.PubMedCrossRef
107.
go back to reference Das SK, Clegg ST, Samulski TV. Computational techniques for fast hyperthermia temperature optimization. Med Phys. 1999;26:319–28.PubMedCrossRef Das SK, Clegg ST, Samulski TV. Computational techniques for fast hyperthermia temperature optimization. Med Phys. 1999;26:319–28.PubMedCrossRef
108.
go back to reference Cheng KS, Stakhursky V, Craciunescu OI, Stauffer P, Dewhirst M, Das SK. Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modeling of 'virtual sources'. Phys Med Biol. 2008;53:1619–35.PubMedCentralPubMedCrossRef Cheng KS, Stakhursky V, Craciunescu OI, Stauffer P, Dewhirst M, Das SK. Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modeling of 'virtual sources'. Phys Med Biol. 2008;53:1619–35.PubMedCentralPubMedCrossRef
109.
go back to reference Kok HP, Van Haaren PMA, van de Kamer JB, Zum Vörde Sive Vörding PJ, Wiersma J, Hulshof MCCM, et al. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. Int J Hyperthermia. 2006;22:375–89.PubMedCrossRef Kok HP, Van Haaren PMA, van de Kamer JB, Zum Vörde Sive Vörding PJ, Wiersma J, Hulshof MCCM, et al. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. Int J Hyperthermia. 2006;22:375–89.PubMedCrossRef
110.
go back to reference Wust P, Weihrauch M. Hyperthermia classic commentary: 'Simulation studies promote technological development of radiofrequency phased array hyperthermia' by Peter Wust et al., International Journal of Hyperthermia 1996;12:477–94. Int J Hyperthermia. 2009;25:529–32. Wust P, Weihrauch M. Hyperthermia classic commentary: 'Simulation studies promote technological development of radiofrequency phased array hyperthermia' by Peter Wust et al., International Journal of Hyperthermia 1996;12:477–94. Int J Hyperthermia. 2009;25:529–32.
111.
go back to reference Ranneberg M, Weiser M, Weihrauch M, Budach V, Gellermann J, Wust P. Regularized antenna profile adaptation in online hyperthermia treatment. Med Phys. 2010;37:5382–94.PubMedCrossRef Ranneberg M, Weiser M, Weihrauch M, Budach V, Gellermann J, Wust P. Regularized antenna profile adaptation in online hyperthermia treatment. Med Phys. 2010;37:5382–94.PubMedCrossRef
112.
go back to reference Numan WC, Hofstetter LW, Kotek G, Bakker JF, Fiveland EW, Houston GC, et al. Exploration of MR-guided head and neck hyperthermia by phantom testing of a modified prototype applicator for use with proton resonance frequency shift thermometry. Int J Hyperthermia. 2014;30:184–91.PubMedCrossRef Numan WC, Hofstetter LW, Kotek G, Bakker JF, Fiveland EW, Houston GC, et al. Exploration of MR-guided head and neck hyperthermia by phantom testing of a modified prototype applicator for use with proton resonance frequency shift thermometry. Int J Hyperthermia. 2014;30:184–91.PubMedCrossRef
113.
go back to reference Craciunescu OI, Das SK, McCauley RL, MacFall JR, Samulski TV. 3D numerical reconstruction of the hyperthermia induced temperature distribution in human sarcomas using DE-MRI measured tissue perfusion: validation against non-invasive MR temperature measurements. Int J Hyperthermia. 2001;17:221–39.PubMedCrossRef Craciunescu OI, Das SK, McCauley RL, MacFall JR, Samulski TV. 3D numerical reconstruction of the hyperthermia induced temperature distribution in human sarcomas using DE-MRI measured tissue perfusion: validation against non-invasive MR temperature measurements. Int J Hyperthermia. 2001;17:221–39.PubMedCrossRef
114.
go back to reference Verhaart RF, Rijnen Z, Fortunati V, Verduijn GM, Walsum TV, Veenland JF, Paulides MM: Temperature simulations in hyperthermia treatment planning of the head and neck region: Rigorous optimization of tissue properties. StrahlentherOnkol. 2014;190:1117–24 Verhaart RF, Rijnen Z, Fortunati V, Verduijn GM, Walsum TV, Veenland JF, Paulides MM: Temperature simulations in hyperthermia treatment planning of the head and neck region: Rigorous optimization of tissue properties. StrahlentherOnkol. 2014;190:1117–24
115.
go back to reference Dos Santos I, Haemmerich D, Schutt D, da Rocha AF, Menezes LR. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Phys Med Biol. 2009;54:627–40.PubMedCentralPubMedCrossRef Dos Santos I, Haemmerich D, Schutt D, da Rocha AF, Menezes LR. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Phys Med Biol. 2009;54:627–40.PubMedCentralPubMedCrossRef
116.
go back to reference Prakash P, Deng G, Converse MC, Webster JG, Mahvi DM, Ferris MC. Design optimization of a robust sleeve antenna for hepatic microwave ablation. Phys Med Biol. 2008;53:1057–69.PubMedCrossRef Prakash P, Deng G, Converse MC, Webster JG, Mahvi DM, Ferris MC. Design optimization of a robust sleeve antenna for hepatic microwave ablation. Phys Med Biol. 2008;53:1057–69.PubMedCrossRef
117.
go back to reference Kok HP, Crezee J, Franken NAP, Stalpers LJA, Barendsen GW, Bel A. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. Int J Radiat Oncol Biol Phys. 2014;88:739–45.PubMedCrossRef Kok HP, Crezee J, Franken NAP, Stalpers LJA, Barendsen GW, Bel A. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. Int J Radiat Oncol Biol Phys. 2014;88:739–45.PubMedCrossRef
118.
go back to reference Crezee J. Biological modeling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol 2015. Crezee J. Biological modeling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol 2015.
Metadata
Title
Current state of the art of regional hyperthermia treatment planning: a review
Authors
HP Kok
P. Wust
PR Stauffer
F Bardati
GC van Rhoon
J. Crezee
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0503-8

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue